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Detection of System Compromise
in Additive Manufacturing Using
Video Motion Magnification
Three-dimensional printing systems have expanded the access to low cost, rapid methods
for attaining physical prototypes or products. However, a cyber attack, system error, or
operator error on a 3D-printing system may result in catastrophic situations, ranging
from complete product failure, to small types of defects which weaken the structural integ-
rity of the product. Such defects can be introduced early-on via solid models or through G-
codes for printer movements at a later stage. Previous works have studied the use of image
classifiers to predict defects in real-time and offline. However, a major restriction in the
functionality of these methods is the availability of a dataset capturing diverse attacks on
printed entities or the printing process. This paper introduces an image processing tech-
nique that analyzes the amplitude and phase variations of the print head platform arising
through induced system manipulations. The method uses an image sequence of the printing
process to perform an offline spatio-temporal video decomposition to amplify changes
attributable to a change in system parameters. The authors hypothesize that a change in
the amplitude envelope and instantaneous phase response as a result of a change in the
end-effector translational instructions to be correlated with an AM system compromise.
Two case studies are presented, one verifies the hypothesis with statistical evidence in
support of the method while the other studies the effectiveness of a conventional tensile
test to identify system compromise. The method has the potential to enhance the robustness
of cyber-physical systems such as 3D printers. [DOI: 10.1115/1.4045547]

Keywords: computer vision for additive manufacturing, video magnification, structural
analysis, cyber-security for 3D printing

1 Introduction
Additive manufacturing systems are becoming increasingly inter-

connected. However, this interconnectivity adds risk to the manu-
facturing system, as vital processes are left exposed to hackers.
Cyber-physical production systems have already been the target
of attacks [1], as seen in the destruction of several processing cen-
trifuges by the Stuxnet worm. By targeting specific machines, the
virus reduced manufacturing capability and led to dangerous cata-
strophic failures in uranium enrichment centers. While additive
manufacturing systems have only recently become a method for
the production of critical, structural components, they present a
valuable target for anyone hoping to disrupt the manufacture of
safe, reliable goods.
Introduction of defects into a digital part, either through operator

error or system error, may affect the structural integrity and hence
the print quality of critical components [2]. Additionally, defects
can also be introduced by failing to fill certain spatial locations
thereby leading to void or crack formation. A straight-forward
approach at solving the problem of defect recognition can be
solved by training an image classifier with images of defects or
by learning kernels from texture analysis [3,4]. However, these
methods are at a disadvantage due to a requirement in large scale

diverse data requirement and annotations that may not be available
for every possible scenario.
By amplifying imperceptible color changes in human skin as a

result of a change in blood volume flow [5], researchers in the bio-
medical optics space have been able to find bio-markers such as
heart rate [6] and respiratory rate [7]. We hypothesize that by
using a similar approach in detecting spatio-temporal changes in
an AM printing process, the changes in phase and amplitude iden-
tified by an off-the-shelf camera can be correlated with a compro-
mised system. A compromise in system utility is meaningful with
a comparison between two different system states, wherein one of
which is assumed to represent the uncompromised state.
In this work, the definition of AM hack will be limited to a single

defect type, namely a void defect with varying depth using only the
filament freeform fabrication method. To make a case for studying
system compromise in AM as a result of CAD-induced defects and
to show that a defect as simple as a void is able to bypass existing
tools, we conduct the following case study. We use PTC CREO 3.0
[8], a commonly used design software in the automotive and aero-
space industries and use the software provided geometrical model
comparison tool to compare an uncompromised CAD model with
a compromised CAD model with the same defect sizes and type as
explained later in the paper. We find that when the distance
between spacing to compare is set to the lowest possible value and
the tolerance varied depending on the thickness of the induced
void, the software was unable to detect a void if the tolerance was
even slightly larger than the size of the void. In the case of multiple
voids or multiple defects of varying sizes, it becomes difficult to set
the right tolerance value or alternatively since theAMmanufacturing
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workflow can be hacked [9,10], it is likely that the tolerance be
changed to allow the system to approve the model for printing.
Ourmethod aims to identify and differentiate between defectmag-

nitudes via changes in the properties of the image sequence, as
induced by the end effector tool path movements. This section pro-
vides an introduction and motivation for this work. Section 2 high-
lights cyber-security attacks in AM, further reinforcing the need
for predictive technologies while the latter sub-sections focus on
related work, their limitations and the research questions we tackle
in this paper. Section 3 introduces the method of phase-based
video amplification in the context of AM and feature extraction
from the resulting high-dimensional data to further perform classifi-
cation. Section 4 briefly elucidates data collection, experimental, and
validation set-up, while Sec. 5 discusses the results as obtained from
statistical analysis followed by conclusion to the study.

2 Literature Review
2.1 Cyber-Security Attacks in Additive Manufacturing.

The interconnectivity and flexibility of AM systems [11,12]
creates opportunities for hackers to steal, alter, or delete designs
[13], as well as prevent normal and safe operation of machinery
[14]. This can cost manufacturers considerably [15], as any loss of
productivity or intellectual property could disrupt revenue streams.
A number of controlled laboratory experiments have demon-

strated possible attacks on additive manufacturing systems. These
attacks typically fall into one of three categories: data siphoning/
exfiltration [16–18], denial of service [10,19], and defect introduc-
tion [20]. While each poses a real threat to manufacturing, the most
well studied is likely data siphoning/exfiltration.
Cyber-security measures have been suggested to prevent data

siphoning from additive manufacturing systems. Groups like
Chen et al. [21] and Gupta et al. [22] embedded features in CAD
models to ensure that parts could only be produced with pre-
determined settings, thus limiting access to the original designers.
Fadhel et al. [23] created a method of applying a digital and physical
signature to parts, embedding evidence of ownership directly into
the object. With these measures, specific applications can be pro-
tected against siphoning attacks. In addition to data siphoning of
the design files, hackers can gather a variety of peripheral informa-
tion from additive manufacturing systems, such as sound [24],
reflected light [17], and radiant heat [25], that are collectively
known as “side-channels.” Hackers could use these side channels
to steal intellectual property or other confidential processes from
manufacturers. Fortunately, system administrators can also use
these side-channels to detect malicious attacks [26]. Beyond intel-
lectual property theft, introducing errors and compromising the
integrity of parts can have notable and catastrophic effects.
A study by Belikovetsky et al. [27] introduced a stress concentra-

tion into one propeller blade of a drone by adding an imperfection
into the original CAD file. Since the AMmanufacturing workflow is
vulnerable to system attacks due to the vulnerability in the software
tools and the network connecting the various components [9,10], a
defect introduced early on in the CADmodeling stage will penetrate
easily deceiving the other steps. The imperfection, while undetect-
able through visual inspection and standard metrology methods,
caused catastrophic failure mid-flight, leading to a crash. While
crashing a drone is a fairly harmless demonstration, it shows the
danger of introducing errors into parts necessary. Other researchers
such as Wu et al. [20] and Sturm et al. [28] used the same void intro-
duction technique to compromise mechanical integrity and showed
that visual inspection and standard metrology methods were insuf-
ficient in detecting attacks. When AM becomes more widely used in
the manufacture of medical devices [29,30], the integrity of the
printed pieces must be ensured to maintain patient safety. In aero-
nautics, printed pieces can be safety-critical components with
complex thermal and mechanical properties [31,32]. Introducing
errors into the design could result in changes to these properties,
ultimately leading to catastrophic failure.

From previous studies [33,34], we have identified variation in
speed and temperature to be the critical elements that affect the
accuracy of the geometric features [35] in printed pieces. Compo-
nents whose speed can be varied include the extruder motor,
end-effector, and printbed, among others [36]. In this paper, we
are interested in studying early-stage defect detection and in partic-
ular defects introduced at the CADmodel stage. As a result of early-
stage compromise, the defects are eventually propagated further
into the AM workflow, generating erroneous G codes and M
codes which again get translated to end-effector movements.
The inspection of parts produced with AM requires the character-

ization of external and internal geometry. Non-destructive inspec-
tion techniques include computed tomography [37–39], ultrasonic
imaging [40,41], and impedance testing [42,43]. While capable of
mapping internal geometry with high resolution, each of these
methods is expensive and requires time for measurement and anal-
ysis. In situ monitoring has been suggested as a method of QA/QC
that requires little or no additional time for analysis [44–47].
Companies such as Identify 3D1 and 3DP Security2 have

emerged to provide IT solutions to ensure the integrity of data in
AM systems. Identify 3D provides a suite of software that helps
customers ensure the integrity of printed designs,3 while 3DP
Security employs various techniques to protect the intellectual prop-
erty rights of designers and companies [48]. However, the diversity
of possible cyber-attacks requires a solution that is robust and easily
adapted to a wide array of machines. Furthermore, cyber-security
solutions, can be costly [49,50] of a manufacturing process. Less
intrusive solutions that minimize necessary modifications to the
manufacturing machine are thus preferred.

2.2 Image Based Motion Analysis for Understanding
Structural Change. The discontinuities due to deviation from
optimal process flow settings can be attributable to the introduction
of defects via system hacks [51]. Structural health monitoring
(SHM) techniques focus on extracting the dynamic response of
structural systems to assess process condition, detect possible
damage detection or residual life prediction of a structure. Videos
are well-suited for AM system monitoring because they provide
non-contact, real-time, high-dimensional signals as a sequence of
snapshots across time. Conventional non-destructive testing tech-
niques may not be well-suited for SHM because they cannot
assist in real-time structural monitoring and require laboratory-
grade equipment to characterize defects and/or perform condition
analysis [52–54]. Therefore, these techniques along with other
imaging-based techniques such as micro CT scanning fall under
preventive maintenance methodologies. However, predicting a
defect/compromise as its progressing is much more beneficial in
terms of time, money, and resources along with limited to decreased
downtime [55,56]. Hence, the parameters such as the size, price,
and a requirement for an optimal sensor network arrangement
which is sensitive in picking up varying frequency signals yet
robust to noise is essential in order to provide a real-time feedback
and monitoring assessments [56]. For this reason, optical monitor-
ing methods are increasingly being studied and are also being used
for structural dynamics identification and in SHM systems [57,58].
Image processing techniques do not explicitly capture the dis-

placements of components from a sequence of images. They
often approximate the motion field via motion estimation tech-
niques which can often capture motion noise, which then offsets
the frequency spectrum of the underlying signal of interest
[58,59]. Phase variations corresponding to structural changes in a
sequence of images captures the motion-field information and can
be temporally processed to reveal imperceptible motions, with
robustness to noise [59,60].

1https://identify3d.com/
2https://identify3d.com/trace/
3https://identify3d.com/protect/, https://identify3d.com/manage/, https://identify3d.

com/enforce/, https://identify3d.com/trace/
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Earlier studies have used phase-based motion magnification to
extract the operating deflection shapes of the structures, damage
characterization, and modal analysis [59,61–64]. There have been
studies proposed in AM that utilize computer vision techniques to
detect defects by using automated process monitoring techniques
capable of working in real-time and offline [3,4,65,66]. A support
vector machine approach to perform automatic defect identification
is presented in the paper by Delli and Chang [3], where they classify
parts as good or defective based on images samples captured during
the printing process. Thoughmachine learning techniques provide an
edge over classification accuracies, they are restricted by data
wherein a diverse sample involving diverse defects is required to
qualify as a generalizable defect classifier. Additionally, the
method is limited by camera orientation and requires stopping the
printing process temporarily to perform image classification.
Gobert et al. [4] proposed using an ensemble classifier to perform a
binary classification during the printing process to detect defects
with the help of images captured using an in situ DSLR camera
with the 3D CT scan data of the layers as ground truth. Though
their method allows for layer level defect identification, it is
limited in data by the supervised approach and the use of a DSLR
camera attached to the printer. Holzmond and Li [65] proposed
another in situ method to identify defects and attacks by performing
a 3D image correlation of the part being printed with the computer
model of the part. This method also relies on the use of an industrial-
grade high-cost camera. Rather than adding sensors or industrial
grade cameras to existing AM machines, our method uses an
off-the-shelf camera with no contact with the printer to perform
defect detection using unlabeled image data. Our method compares
the temporally encoded motion of a compromised image sequence
with that of an uncompromised image sequence to identify variations
thereby avoiding the issue of subjectivity of the nature of the defect.
Such a feat previously required the use of labeled data and is suscep-
tible to the problem of differentiating between void as a feature and
void as a defect. Finally, our method will help generate important
lower dimensional spatio-temporal features from a higher dimen-
sional video data of the system under study as opposed to making
a classification based on the higher dimensional pixel data.

2.3 Research Hypotheses. Based on the concomitant gaps in
the literature, this study seeks to answer two research questions,
namely:

RQ-1: Can the magnitude of the amplitude envelope from an
image sequence of the AM printing process detect system
compromise?

Ho1: There is no difference in means between the mean amplitude
envelope of a template image sequence and a compromised
image sequence.

Ha1: There is a difference in the mean amplitude envelopes of a
template image sequence and a compromised image
sequence.

RQ-2: Can the instantaneous phase response from an image
sequence of the AM printing process detect system
compromise?

Ho2: There is no difference in means between the instantaneous
phase response of a template image sequence and a compro-
mised image sequence.

Ha2: There is a difference in the mean instantaneous phase response
of a template image sequence and a compromised image
sequence.

Section 3 will introduce the method of phase-based video ampli-
fication in the context of AM and the corresponding algorithmic
steps toward feature extraction.

3 Method
The ability to reconstruct an image depends on both (i)magnitude

(i.e., information on color) and (ii) phase (i.e., information on

features/edges). The method outlined in Fig. 1 employs the concepts
of phase and magnitude for image processing and reconstruction to
detect a compromise in a 3D-printing process using captured video
data. Given an input of the video recording of a compromised print-
ing process (see Fig. 1), the image sequence in the recording is phase
amplified (Phase amplification of Image Sequence) as explained in
Sec. 3.1. On completion of phase amplification, we transform the
image sequence (Sequence Transformation andDetection) to an ana-
lytic image sequence to identify intentionally induced sample defects
in the spatio-temporal domain as explained in Sec. 3.2.

3.1 Phase Amplification of Image Sequence. Let function
f :x, y � I ∈ RN map spatial position of the pixels along the X and
Y axes of an image from the input image sequenceV: f∈V to an inten-
sity profile I, where x, y ∈ RNxN represents the N×N dimensional
spatial arrangement of the pixels. Our fundamental assumption is
that with no change in global (camera) and local (printer) positions,
themotion of the end-effectorwhich is the print head and anymoving
component on the printer are the only sources of motion which get
encoded in the phase of the image from one frame to another in the
image sequence V. According to the Fourier transform shift
theorem, any change in the spatial domain will lead to a proportional
change in phase in the frequency domain of the corresponding image
function [67]. This suggests that motion magnification within a
selected frequency band corresponding to the natural frequencies
of the moving components will preserve their original motion infor-
mation by preserving the phase variations within the same band. The
fast Fourier transform (FFT) of the spatio-temporal image sequence
decomposes an image as a linear combination of Fourier basis ele-
ments as given by Eq. (1).

f (x, y) =
∑∞

ωx=−∞

∑∞

ωy=−∞
F(ωx, ωy)e

i(ωxx+ωyy) (1)

where, f (x, y) is the original image inwhich each band corresponds to
a single frequency (ωx, ωy) in the X and Y axes, respectively, while
(ωxx + ωyy) corresponds to the phase of the complex sinusoid
(F(ωx, ωy)ei(ωxx+ωyy)) and F denotes the amplitude of an image
sample in the Fourier domain. The image sequence as depicted in
the AM workflow in Fig. 1 represents an entire printing process,
wherein the motion of the various moving components (print bed
and print head) in the X and Y dimension of the camera frame is cap-
tured spatio-temporally. In this paper,we adopt the steerable pyramid
approach and the image displacement profile as used in Wadhwa
et al. [59]. We present the case of a global translation of a motion
(aggregate motion of all moving components in the printer) over
time using a displacement profile ((x + δ(t), y + δ(t))) which is com-
bined with Eq. (1) to represent the displaced Fourier decomposition
as given by Eq. (2). Alternatively, it is possible to use a Lagrangian
approach [68,69] involving the use of compute-intensive opticalflow
vectors to represent themotionfield. The use of a steerable pyramid is
favored due to the properties of the transformation such as non-
aliased sub-bands and quadrature-phase filters that avoid spatial
aliasing. Additionally, spatial decomposition into spatial bands
allowband-specific temporalfiltering thereby reducing amplification
errors which in turn allows for meaningful phase measurements.

f (x + δ(t), y + δ(t)) =
∑∞

ωx=−∞

∑∞

ωy=−∞
F(ωx, ωy)e

i(ωx(x+δ(t))+ωy(y+δ(t)))

(2)

where ωx(x + δ(t)) + ωy(y + δ(t)) represents the phase shift corre-
sponding to a global translation and δ(t) is the displacement function
which provides the local spatial motion information. For the sake of
simplification, let Hω(x, y, t) be a complex sinusoid such that
Hω(x, y, t) = F(ωx, ωy)ei(ωx(x+δ(t))+ωy(y+δ(t))). Unlike the Laplacian
pyramid or the Gabor filter, the directional derivative operators of
the steerable pyramid provide a translation and rotation invariant
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representation of the image structure. This allows phase variations to
become detectable in multiple camera orientations. The motion
amplified reconstruction of the image, given a construction of the
steerable pyramid (λω,θ) is given by Eq. (3), depicting the build
and collapse of the steerable pyramid in the frequency domain.

f (x + δ(t), y + δ(t)) =
∑∞

ωx=−∞

∑∞

ωy=−∞
Hω(x, y, t)λ2ω,θ (3)

Since the FFT computes the magnitude and phase over time at every
spatial scale and orientation of the pyramid, we temporally bandpass
filter the phase spectrum corresponding to the frequency bands of
interest (in our case, the harmonic frequencies of the moving compo-
nent in the system). The frequency band here refers to the bandwithin
which the motion information of the moving component(s) is
encoded. The image samples are bandpass filtered in the 0–15Hz
range based on empirical analysis as no frequencies above 15Hz
resulted in significant amplification of the print head motion. The
bandpassed phase (Pω(x, y, t) = ωδ(t)) is then multiplied by a

suitable amplification factor (α) and convolved with Hω(x, y, t) to
collapse the pyramid as given by Eq. (4).

f (x + (1 + α)δ(t), y + (1 + α)δ(t)) =
∑∞

ωx=−∞

∑∞

ωy=−∞
Hωe

iαPωλ2ω,θ (4)

f (x + (1 + α)δ(t), y + (1 + α)δ(t)) as given by Eq. (4) is a
motion magnified image. This process of forming a steerable
pyramid and collapsing to reconstruct a phase amplified image
sequence is performed iteratively for each image in the sequence.
By phase-amplifying the image sequence, we have amplified all
imperceptible movements in the bandpass (continuous simple har-
monic oscillations as a result of repetitive translational movements).
Since the defects introduced onto the samples are small, the
phase-amplification step helps amplify changes representative of
missing tool path movements. Section 3.2 will introduce a basis
for observing the energy variations as a result of defect formation
within the spatio-temporal domain.

Fig. 1 Process diagram of the proposed video-based method
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3.2 Image Sequence Transformation and Detection. Each
image in the sequence of images in Vtemp and Vsample is subject to
motion magnification as described in Sec. 3.1 and reconstructed
to form the motion magnified video V̂template and V̂sample, where
V̂template is the image sequence corresponding to the uncompromised
printing process while V̂sample is the image sequence of the compro-
mised printing process subject to process monitoring. Since many
of the naturally occurring signals exhibit time-varying parameters,
it becomes important to analyze the time-varying motion magnified
image sequences. The objective of the method is to observe a devia-
tion in the positioning of the moving component(s) over time
(spatio-temporal flow), between image sequences. However,
given the phase amplified spatio-temporal sequence, the Uncer-
tainty Principle causes a time-frequency trade-off, causing the
sequence to lose temporal resolution in favor of frequency resolu-
tion if analyzed in the frequency domain. To work around the lim-
itation imposed by the Uncertainty Principle and to describe a
signal simultaneously in time and in frequency, we construct the
analytical signal of the spatio-temporal sequence [67]. By localizing
the amplitude, phase and frequency distribution of the image
sequence, we construct a complex-valued representation of the
time-varying function f (x + (1 + α)δ(t), y + (1 + α)δ(t)) such that
the real and the imaginary parts are related to each other via the
Hilbert transform. Additionally, since most of the information in
the reconstructed image sequence is redundant, important features
such as instantaneous amplitude envelope, phase, and frequencies
are extracted as properties of the analytical signal to decrease the
original dimensionality of the image sequences. An analytical
signal is a signal in which negative frequency components can be
discarded with no loss in information [67] and is formulated as
follows:

P(t) = p(t) + jH[p(t)] (5)

where P(t) is the analytic signal constructed from p(t) = f (x + (1 +
α)δ(t), y + (1 + α)δ(t)) andH is a linear Hilbert transform operator.
It is clearly evident that the imaginary component of the analytic
signal (P(t)) is the Hilbert transform of the real-valued signal, and
the real signal p(t) can always be retrieved by setting the imaginary
component H[p(t)] = 0 to zero. The transformation of the original
signal and the extraction of the signal properties is outlined in the
Image Sequence Transformation and Detection step in Fig. 1. The
instantaneous amplitude (envelope extraction) is computed as

|P(t)| =
������������������
p(t)2 +H[p(t)]2

√
, while the instantaneous phase is com-

puted as ϕ(t) = ∠P(t) = arctan [H[p(t)]/ p(t)] and the instantaneous
frequency is computed as v(t) = (1/2π)(d/dt)ϕ(t). Having derived
the envelope, the instantaneous phases and frequencies of the ana-
lytic signal, we now have a decomposed representation of the spatio-
temporal flow corresponding to the AM printing process.We use the

mean amplitude envelope and the instantaneous phase responses of
the image sequence extending to time t to differentiate between
samples to identify system compromise and the type of defect via a
cross-correlation analysis, which is described in Sec. 5. Section 4 dis-
cusses the experimental protocol and sample data collection while
Sec. 5 describes statistical tests and cross-correlation analysis.

4 Experiments and Data Collection
The following sections describe the experimental setups, data

format, and storage. We perform an experiment as described in
Sec. 4.1 to collect data for analysis using our method. Section 4.2
describes a tensile testing experiment that is conducted to observe
the effectiveness of conventional techniques on identifying
system compromise.

4.1 Case Study 1: Data Collection for Validating the
Video-Based Method. The researchers used a Prusa i3 MK3 to
print 10 ASME Type-1 tensile bars. The tensile bars (see Fig. 2)
were printed with poly-lactic acid at a thickness of 3.2mm. The
tensile bars were printed with an extruder nozzle temperature of
210 deg and a heated bed temperature of 60 deg. Before image pro-
cessing analysis, each tensile bar was weighed with a spirit digital
scale. The mean and standard deviation of the mass of the 10
tensile bars was calculated to establish a range of acceptable masses.
An intentionally introduced attack was performed on the original

CAD model to produce a 0.2mm by 5.0mm void near one shoulder
of the tensile bar. The placement of the void was based on work in
previous literature [28]. The depth of the void varied for three levels
of concealment, tier-1: full-depth void (thickness of full-thickness
void: 3.2mm), tier-2: partial-depth void (thickness of partial-
thickness void: 1.6mm) originating from the surface, and tier-3:
internal void (thickness of internal void: 2.4mm). The length of
the defect was just over 3% of the total length of the tensile bar.
The width of the defect was just over 1% of the total width of the
tensile bar. However, due to the placement of the full thickness
void, the cross-sectional area at the medial end of the defect was
decreased by nearly 15%. The mass of these altered tensile bars
was collected to compare with the 10 unaltered tensile bars. As
no prior dataset corresponding to non-contact, non-invasive struc-
tural defect detection exists, we created one containing video
sequences with each video recording lasting the entire print duration
of 30min of 10 no void base samples, as well as 6 samples with
included voids: 2 tier-1, 2 tier-2, and 2 tier-3. The image samples
are amplified by a factor (α) equals 40 and bandpass filtered in
the 0− 15Hz range based on empirical analysis as no frequencies
above 15Hz resulted in significant amplification of the print head
motion. The experimental setup is illustrated in Fig. 3. This setup
ensures that the camera is positioned parallel to the 3D printer

Fig. 2 Analyzed samples (circled spots indicate voids): (a) tensile bar with no void, (b) tensile bar
with internal void, (c) tensile bar with single side void, (d) tensile bar with through void,
(e) enlarged view of tensile bar with single side void, and (f) enlarged view of tensile bar with
through void
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such that there is no physical contact between the printer and the
camera, thereby isolating the vibration of the 3D printer from affect-
ing the data collection. Videos are recorded in a 24-bit RGB color
format at 29.97 frames/second (NTSC video standard) and a resolu-
tion of 1920 × 1080 and stored in H.264/advanced video coding
(AVC) format. However, for the study and analysis, we down-
sampled the resolution of the video to 640 × 480. Our fixed factor
was the sample design while our variables included the tiers of
defects with the response measured being the phase-plane
variations.

4.2 Case Study 2: Tensile Testing on Printed Samples. We
are interested in comparing the effectiveness of conventional
mechanical tests to that of our method. Tensile testing is a funda-
mental technique used in the mechanical and material sciences to
determine the properties of a material. By subjecting the printed
samples to tensile testing, we expect to understand the effectiveness
of the test in detecting defects post-printing to identify possible
system compromise. We follow a protocol similar to that of
Zeltman et al. [48] and according to ASME standards [70], which
is conducted to observe the effectiveness of conventional tech-
niques on identifying system compromise. The tensile testing was
performed on an Instron 5868 tensile testing rig with a 10 kN
load cell. All specimens (refer Sec. 4.1) were pulled at a rate of
10mm/min. Stress was calculated using a cross-sectional area of
41.6 mm2, from a width of 13mm and a thickness of 3.2mm.
Strain was calculated using a gauge length of 50mm. The experi-
mental setup of the apparatus and the specimen (after testing) is
as shown in Fig. 4. The stress-strain curves were plotted while ulti-
mate tensile strength, elongation at fracture, and modulus of elastic-
ity were calculated for further analysis.
Section 5 elucidates the application of the algorithm, the corre-

sponding statistical analysis on the effectiveness of our method
and that of the tensile test.

5 Results and Discussion
Prior to analyzing the printed samples using the video-based

method and tensile testing, a visual inspection and mass comparison
are performed. The mean mass of the 10 unaltered tensile bars was
9.88 g, with a standard deviation of 0.06 g. Each of the tensile bars
with an internal void fell within 1 standard deviation of the mean,
while the tensile bars with a full-depth void and partial-depth
void fell within 2 standard deviations. This suggests that tensile
bars with internal voids cannot be differentiated from unaffected
tensile bars through either mass or visual inspection and that

other detection methods must be employed. To that end, the follow-
ing sections discuss and validate our hypothesis on using the video-
based method for detecting system compromise. Additionally, we
also subject the printed samples to tensile testing to detect the
hacks and we compare the effectiveness with that of the video-based
method to show that automated methods are required in the AM
cyber-security space.

5.1 Discussion of Case Study 1. For the first case study,
we perform offline phase amplification on the video sequences as
recorded by the camera as shown in Fig. 3. The amplitude envelope
and instantaneous phase variation responses over time are com-
puted to predict a difference in the spatio-temporal flow of
V̂template and V̂compromised with a cross-correlation analysis to detect
voids caused by system manipulations. We test our hypotheses
using responses from the experiment described in Sec. 4.1 to
address our research questions. A one-way ANOVA with
post-hoc analysis is performed to statistically validate the feasibility
of using the video-based method in AM cyber-security. We perform
a one-way ANOVA test with four levels in a between groups layout.
The levels being compared are (1) no void amplitude envelope/
instantaneous phase responses, (2) single side void amplitude enve-
lope/instantaneous phase responses, (3) internal void amplitude
envelope/instantaneous phase responses, and (4) through void
amplitude envelope/instantaneous phase responses.
Figure 5 depicts the interval plot for each of the levels according

to their corresponding descriptive statistical information. There is a

Fig. 3 Experimental setup Fig. 4 Printed sample subject to tensile testing

Fig. 5 Interval plot (amplitude responses versus image
sequences)
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clear difference between the means of no-void, single side void,
internal void, and through void amplitude responses as observable
in Fig. 5, which in turn presents a case for rejecting the null hypoth-
esis (Ho1) with P-value <0.05. However, a one-way ANOVA only
identifies if there exists a difference in mean amplitude envelope
responses between the groups without specifying the groups
whose mean vary in comparison to that of No Void responses.
Thus, we perform the Tukey’s simultaneous tests for differences
of means between the levels being compared, whose analysis is
described in Table 1. If the C.I. does not possess “0” in its interval,
then the comparing sequences have a significant difference in
means. However, the Tukey’s test reveals an interesting result,
there is no difference in means between single void and through
void responses. The physical difference between the single void
and through void sample is attributable to the additional layer of
thickness found in the single void sample. This result suggests a
possible limitation in using amplitude envelope responses to
detect defect or compromise at the layer level if the differences
between samples are minute or are not significant as in the case
of no void–internal void comparison.The results of the second
hypothesis test are illustrated using an interval plot comparison as
shown in Fig. 6, while Table 2 describes the Tukey’s test statistics.
Like the concluded hypothesis test, this test also finds a significant
mean difference between the comparing levels with P-value <0.05.
The instantaneous phase response is able to observe the difference
in layer thickness between a single void and through void sample
with a higher significance in difference of mean. This statement is

corroborated by Table 2, while Fig. 6 depicts the 95% CI (confi-
dence interval) for the means of each pair of comparing levels.
This differentiability of themethod in observing layer level thickness
change between two samples (single void sample and through void
sample) is a result of motion encoding via instantaneous phase
responses, which varies in the same time period as a result of the
addition of material in the single void sample. However, though
the Tukey’s test metrics were within the significance threshold for
each of the sample pairs, no void and through void samples share
an overlapping phase distribution. This suggests verifying two prob-
able hypotheses: (i) The size of the void is not large enough to be
detected, suggesting that the method is approaching its void dif-
ference detectability threshold which requires further sensitivity
analysis involving a change in the size of the through void. (ii) Alter-
natively, the method’s signal resolution in capturing changes involv-
ing small voids as such (see Fig. 2) could suggest the approaching
convergence of the Through Void signal with the No Void signal,
in which case a sensitivity analysis involving larger samples with
smaller voids could be performed. However, since this is a study
showing the feasibility of the method in detecting system compro-
mises using an image processing algorithm, we devote the analysis
to a future study with a larger sample size.
At the outset, the instantaneous phase responses coupled with the

magnitude responses are able to differentiate between the defect
types, thereby complementing their ability in detecting system
compromise.
Though the initial objective of the paper is to observe changes in

spatio-temporal flow correlative of intentionally introduced defects,
the use of amplitude envelope and instantaneous phase responses
presents a promising case of differentiating between samples with
varying defect patterns. Since characterizing AM part defects is
not within the scope of this paper, we present a cross-correlation
analysis which not only detects a system compromise, but also
the variations in system compromise with varying system manipu-
lation. Cross-correlation takes as its input two comparing functions
and slides one along the x-axis of the other to understand if they are
identical. By sliding along each discrete point in the x-axis, the inte-
gral of their dot product at each position is calculated, thus complet-
ing the cross-correlation analysis. We compute the cross-correlation
between the amplitude envelope magnitude and instantaneous
phase of V̂NoVoid and each of the remaining image sequences
(V̂SingleSideVoid, V̂InternalVoid , V̂ThroughVoid) as given by the following
equations:

[|Pi|*|PNoVoid|](τ) =
∑Nmax

t=−Nmax

|Pi|(t − τ)|PNoVoid|(t) (6)

Table 1 Tukey simultaneous tests for differences of means between void levels for amplitude responses

Difference of levels Difference of means SE of difference 95% CI T-value Adjusted P-value

Single side void–no void −1.16 0.026 (−1.23, −1.09) −45.01 0.000
Internal void–no void −4.29 0.026 (−4.35, −4.22) −166.27 0.000
Through void–no void −1.19 0.026 (−1.26, −1.13) −46.19 0.000
Internal void–single side void −3.12 0.026 (−3.19, −3.06) −121.26 0.000
Through void–single side void −0.03 0.026 (−0.10, 0.036) −1.17 0.645
Through void–internal void 3.10 0.026 (3.03, 3.16) 120.08 0.000

Table 2 Tukey simultaneous tests for differences of means between void levels for instantaneous phase responses

Difference of levels Difference of means SE of difference 95% CI T-value Adjusted P-value

Single side void–no void 1.71 0.048 (1.58, 1.83) 35.49 0.000
Internal void–no void −2.91 0.048 (−3.03, −2.79) −60.50 0.000
Through void–no void 0.28 0.048 (0.15, 0.40) 5.75 0.000
Internal void–single side void −4.62 0.048 (−4.74, −4.49) −95.99 0.000
Through void–single side void −1.43 0.048 (−1.55, −1.31) −29.74 0.000
Through void–internal void 3.12 0.048 (3.06, 3.31) 66.25 0.000

Fig. 6 Interval plot (instantaneous phase responses versus
image sequences)
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[ϕi*ϕNoVoid](τ) =
∑Nmax

t=−Nmax

ϕi(t − τ)ϕNoVoid(t) (7)

where i∈ {Single Side Void, Internal Void, Through Void} and τ is
the time point called time-lag wherein the cross-correlation between
the image sequences is calculated. In Eqs. (6) and (7), Nmax=
max{NNoVoid, Ni} where N is the number of samples/frames in the
image sequence and the time-lag τ = 0, ± 1, ± 2, . . . , ± Nmax.

The results of the cross-correlation analysis are illustrated in
Fig. 7 for comparing cross-correlations of the magnitude of ampli-
tude envelope and Fig. 8 for comparing cross-correlations of instan-
taneous phase responses. The comparison of cross-correlations
between V̂NoVoid and each of V̂SingleSideVoid , V̂InternalVoid , V̂ThroughVoid

as provided by Fig. 7 indicates the following: (1) The image
sequences V̂SingleSideVoid, V̂InternalVoid , V̂ThroughVoid are correlative
of a possible system compromise via induced defects as none of
the cross-correlations agree with the auto-correlation of V̂NoVoid .

Fig. 7 Cross-correlation between the amplitude envelopes

Fig. 8 Cross-correlation between the instantaneous phase responses
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(2) Cross-correlation between V̂NoVoid , V̂SingleSideVoidV̂NoVoid ,
V̂SingleSideVoid and V̂NoVoid , V̂ThroughVoidV̂NoVoid , V̂ThroughVoid (black
line) suggest that they have an agreeing cross-correlation as
revealed by their aligning cycles due to a difference in layer thick-
ness only, thus agreeing with our Tukey’s test of difference in
finding a similarity in signal response distribution.
Consequently, the comparison of cross-correlations between

V̂NoVoid and each of V̂SingleSideVoid, V̂InternalVoid , V̂ThroughVoid as pro-
vided by Fig. 8 indicates the following: (1) The image sequences
V̂SingleSideVoid , V̂InternalVoid , V̂ThroughVoid are correlative of a possible
system compromise via induced defects as none of the cross-
correlations agree with the auto-correlation of V̂NoVoid . (2) There
is compelling visual evidence suggesting alternating phase variation
between the V̂SingleSideVoid, V̂InternalVoid , and V̂ThroughVoid samples.

5.2 Discussion of Case Study 2. We perform tensile testing on
the printed samples as described in Sec. 4.2. Based on the charac-
teristics of the samples, the test computes the ultimate strength
and elongation at fracture responses. Though we have shown that
the video-based method can be used in detecting system compro-
mise, we are interested to know if a standard test such as tensile
test can be performed on printed samples to identify defects and
hence system compromise. However, our study has an unbalanced
sample size (the number of No Void prints are higher in number).
Though ANOVA is robust to violations of the normality assump-
tion, departure from the assumption of homoscedasticity increases
Type-1 errors. Prior to performing ANOVA, we perform
Levene’s test to check that the assumption of homogeneity of var-
iance holds. With a P-value of 0.469, we fail to reject the null
hypothesis (all variances are equal) when the responses are ultimate
strength. With a P-value of 0.921, we fail to reject the null hypoth-
esis when the responses are elongation at fracture. Additionally, the
linearity of the points when a normal probability plot was generated
suggests that the data are normally distributed for both the
responses. Thus, the assumptions for ANOVA were not violated
and a one-way ANOVA with post-hoc analysis was performed
between the four void types with the responses being the ultimate

strength and elongation at fracture. Figure 9 illustrates the 95% con-
fidence interval comparing the void types against the ultimate
tensile strength. The test fails to reject the null hypothesis (all
means are equal) with a P-value of 0.178 (significance level
0.05). Further, Tukey’s test results as tabulated in Table 3 fails to
find between group significance thereby highlighting that the differ-
ences in ultimate tensile strength cannot be used as a measure to
identify system compromise. Figure 10 illustrates the 95% confi-
dence interval comparing the void types against the elongation at
fracture responses. The test fails to marginally reject the null
hypothesis (all means are equal) with a P-value of 0.059 (signifi-
cance level 0.05) suggesting a possible between group significance.
Tukey’s test results as tabulated in Table 4 finds a statistical signif-
icance between through void and internal void samples only.
Though the differences in elongation at fracture between void
types were significant for one of the pairs, the effectiveness of
tensile testing as a viable technique in distinguishing between
sample types is inconsistent.
Given that no statistically significant differences could be

observed or measured in the mechanical testing between void
parts and no void parts, we conclude the discussion by stating
that traditional quality checks (mass comparison, visual inspection,
and failure testing) are insufficient to identify the voids. However,
the video magnification-based method introduced in this work
was able to identify the defects.

6 Conclusion and Future Work
Given the need for cyber-security measures in cyber-physical

systems associated with additive manufacturing, the paper presents
a method for analyzing the spatio-temporal flow of a phase-
magnified image sequence of a 3D-printing process captured
using an off-the-shelf camera. Specifically, this work exploits the
Eulerian approach of observing a defined window and tracking
the changes in the phase of an image sequence, while amplifying
the changes and performing sequence reconstruction. In this way,
motion information over time is embedded into a recorded image

Fig. 9 Interval plot (ultimate strength responses versus image
sequences)

Table 3 Tukey simultaneous tests for differences of means between void levels for ultimate strength responses

Difference of levels Difference of means SE of difference 95% CI T-value Adjusted P-value

Single side void–no void −1.27 1.16 (−4.73, 2.18) −1.10 0.699
Internal void–no void −2.49 1.16 (−5.94, 0.96) −2.14 0.196
Through void–no void 0.38 1.16 (−3.07, 3.83) 0.33 0.987
Internal void–single side void −1.21 1.50 (−5.67, 3.24) −0.81 0.849
Through void–single side void 1.65 1.50 (−2.80, 6.11) 1.10 0.695
Through void–internal void 2.87 1.50 (−1.59, 7.33) 1.91 0.274

Fig. 10 Interval plot (elongation at fracture responses versus
image sequences)
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sequence of a compromised additive manufacturing system.
The analytical form of the phase amplified and time variable
image sequence (uncompromised and compromised) was then ana-
lyzed using the amplitude envelope and instantaneous phase
changes over time to identify a compromise. To verify the feasibil-
ity of using the amplitude envelope and instantaneous phase of the
analytical version of the image sequence, we conduct a case study to
analyze the printed samples using our method and describe the fea-
sibility with statistical evidence. The ANOVA results further exem-
plify the nature of information encoded as magnitude and phase
within the image sequence. Furthermore, we subject the samples to
mechanical testing to study the effectiveness of the standard tensile
testing technique to observe system compromise to show that
conventional techniques may not be suitable for addressing the
problem under study. The statistical evidence clearly reveals that
new methods are required to address the cyber-security problems
in the additive manufacturing domain. Though the focus of this
paper is on analyzing the effectiveness of using the motion magni-
fication algorithm to perform early stage defect detection in the AM
workflow, defects introduced through variation in speed and tem-
perature of components should also be tested to determine the gen-
eralizability of the image processing algorithm. This would help
determine the usability of the approach for batch process monitor-
ing and increase the potential use cases.
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