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A B S T R A C T   

In this work, we introduce a kernel propagation method that enables graph neural networks (GNNs) to leverage 
higher-order network structural information without increasing the complexity of the networks. Recent studies 
have introduced GNNs that include higher-order neighborhood features containing global network information 
by propagating node features using a higher-order feature propagation rule. Though these GNNs have shown to 
improve node classification performance, they fail to include local connectivity information. Alternatively, GNNs 
also concatenate increasing orders of adjacency matrix in deeper layers in order to include higher-order struc-
tural information. In addition to global network information, GNNs also make use of node features which are 
network and node dependent features that serve to distinguish structurally isomorphic sub-structures within 
graphs. However, such node features may not always be available or depending on the network, may lead to 
deteriorating classification performance. Hence, to resolve these limitations, we propose a kernel propagation 
method that introduces a pre-processing step for GNNs to leverage higher-order structural features. The higher- 
order structural features are computed using a weighted random walk matrix which is node independent while 
using the first-order spectral propagation rule which explicitly considers local connectivity. Through our 
benchmark experiments, we find that the computed higher-order structural features are capable of replacing 
node dependent features while performing node classification task with performance on par with the state of the 
art approaches. Further, we also find that including both node features and higher-order structural features 
increases the performance of GNNs on large scale benchmark networks considered in this study. Our results show 
that considering local and global structural information as input to GNNs lead to an improvement in node 
classification performance in the absence/presence of node features without loss of performance.   

1. Introduction 

Graphs are ubiquitous data structures that allow relational knowl-
edge about interacting entities to be efficiently stored, represented, and 
inferred. One of the principal problems in machine learning on graphs is 
finding an efficient way to represent information about the structure and 
homophily of the interacting entities into the machine learning models. 
Graph learning has enabled numerous graph analytic tasks such as 
community detection (Girvan and Newman, 2002; Rosvall and Berg-
strom, 2008), link prediction (Lu and Getoor, 2003), node classification 
and clustering (Perozzi et al., 2014; Grover and Leskovec, 2016; Kipf and 
Welling, 2016; Li and Pi, 2019). Traditionally, most of the graph analytic 
tasks have relied on manually engineered feature vectors formulated 

with different graph statistics (Bhagat et al., 2011) such as clustering 
coefficient and degree measures or kernels (Gärtner et al., 2010) 
depending on the task. However, such approaches can be limiting in 
understanding the complex relationships between nodes, as graph data 
is usually high dimensional and hence may not be generalizable to all 
graphs. Recent advances in representation learning (Wu et al., 2020) 
using deep learning models have helped advance the performance of 
aforementioned tasks by constructing an efficient mapping for each 
node in a graph from a higher dimensional non-euclidean space to a 
meaningful low-dimensional vector representation. 

Neighborhood aggregation methods use different aggregation tech-
niques (Kipf and Welling, 2016; Veličković et al., 2017; Hamilton et al., 
2017) to aggregate feature representations from nodes in the graph to 
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create efficient lower dimensional embeddings. However, such ap-
proaches pose risks of generalizability due to a dependence on the 
availability of meta-data such as node features. In the absence of node 
features, existing GNNs fail to differentiate between topologically 
similar graph sub-structures within graphs (Xu et al., 2018) and as a 
workaround, augment node features as one-hot encodings (Kipf and 
Welling, 2016; Veličković et al., 2017) or use deeper networks. 

Previous work has focused on node features (Kipf and Welling, 2016; 
Veličković et al., 2017) which only provides a coarse representation of 
the network to capture position/location while using spectral and spatial 
approaches to compute structural features for node classification tasks. 
In addition, models trained using network-dependent node features may 
not generalize to other networks. Furthermore, neighborhood aggrega-
tion in baseline methods such as GCN and Graph Attention Networks 
(GAT) are unable to consider higher-order neighborhood information 
without increasing the number of neural network layers. However, 
increasing the depth of the models results in over-smoothing of node 
features (Li and Pi, 2019), wherein the representations of the nodes in 
the network converge to a stationary representation, further leading to 
the problem of vanishing gradients. Other approaches have looked at 
increasing the depth of GNNs with a top layer densely connected with 
earlier layers to concatenate/max-pool features (Xu et al., 2018), 
adapting neighborhood ranges (Klicpera et al., 2018) and using higher- 
order neighborhood (powers of adjacency matrix) aggregation tech-
niques (Abu-El-Haija et al., 2018; Veličković et al., 2018) as a work-
around to incorporate higher-order neighborhood representation 
learning objectives. 

The aforementioned approaches improve classification accuracy by 
increasing the complexity of the model while assuming that there is a 
strong correlation between node features and network structure. Alter-
natively, since node features and structural features indeed describe the 
same network, we cannot neglect the correlation between them. Since 
node features characterize nodes, they may be used to differentiate be-
tween equivalent substructures. Hence, instead of following any one of 
the assumptions, we hypothesize that structural features and node- 
attribute features complement one another, while structural features 
are derived independently from the network without the help of node 
labels nor node features. Additionally, integrating the information on 
the connections of each node with the information about its features is 
crucial to discriminating essential and negligible characteristics of nodes 
(Bianconi et al., 2009), thereby minimizing false negatives and false 
positives. 

To address the limitations posed by existing learning algorithms, we 
propose a kernel propagating graph neural network (KP-GNN) which 
makes the following contributions: 

1. A pre-processing step that captures higher-order neighborhood in-
formation from a symmetric normalized adjacency matrix to 
compute a discounted t-hop diffusion affinity matrix that captures 
diffusion strength between nodes in a t-hop neighborhood. Such a 
feature representation captures higher-order structural information 
as an approximate limiting distribution of the normalized random 
walk matrix. 

2. A kernel propagation technique that uses a first-order feature prop-
agation rule which preserves target nodes’ immediate neighborhood 
while propagating the pre-computed higher-order structural features 
and node features using a message passing neural network 
architecture.  

3. A scaled Hadamard-product attention mechanism which reduces the 
number of hidden neurons/parameters by half in an attention head 
such as GAT while stabilizing the losses during training and valida-
tion. The use of the attention mechanism transforms KP-GNN to an 
attentional kernel propagating graph neural network (AKP-GNN).  

4. An approach that shows node features can be replaced with higher- 
order structural features without loss of classification accuracy for all 
networks considered in this study. This contribution allows existing 

GNNs to be independent of node features when they are unavailable 
or missing while boosting the performance of GNNs when such fea-
tures are available. 

We validate the performance of AKP-GCN by comparing it with state 
of the art representative graph embedding methods, which includes 
node2vec (Grover and Leskovec, 2016), GCN (Kipf and Welling, 2016), 
GAT (Graph Attention Network) (Veličković et al., 2017), JK Net 
(Jumping Knowledge Network) (Xu et al., 2018), APPNP (Klicpera et al., 
2018) and GDC (Graph Diffusion Convolution) (Klicpera et al., 1335). 
We test these methods using three benchmark small-scale real-world 
datasets and three benchmark large-scale real-world datasets on a node 
classification task. The experimental evaluation validates the perfor-
mance of the proposed propagation technique. 

The remainder of the paper is organized as follows. This section 
provides an introduction and motivation for this work. Section 2 pro-
vides the background of related works. Section 3 provides preliminary 
concepts, definitions, and describes the proposed method in detail. 
Section 4 describes the statistics of the datasets, hyper-parameters for 
reproducing the work, methods being compared, followed by results and 
discussion. Section 5 concludes the paper. 

2. Related work 

2.1. Random-walk based approaches 

Representation learning-based approaches embed the network onto 
a lower-dimensional vector space where information about the topology 
and communities of the network are preserved. The existing node rep-
resentation algorithms can be classified as preserving the structural 
equivalence (topology) of a network, the homophily (similarity in 
communities) of a network, or a hybrid of both approaches (Grover and 
Leskovec, 2016). Homophily based methods include graph factorization 
(Belkin and Niyogi, 2002; Tang and Liu, 2011), structural equivalence 
methods include random walk and graph factorization (Henderson et al., 
1450; Ribeiro et al., 1450) approaches, while hybrid methods (Perozzi 
et al., 2014; Grover and Leskovec, 2016; Qiu et al., 1450) incorporate 
objective functions capable of learning the network’s homophily and 
topology with comparable computational efficiency. Other approaches 
in the literature include metric/modularity-based algorithms (Girvan 
and Newman, 2002; Newman and Girvan, 2004; Yang and Leskovec, 
2015) and attributed graphs algorithms (Wang et al., 2016; Kipf and 
Welling, 2016; He et al., 2017; Veličković et al., 2017; Li et al., 2018) 
that are an augmentation of topology based methods wherein networks 
such as citation networks have nodes that contain attribute information 
also called node features that are important for downstream tasks such as 
node classification and link prediction. 

Deepwalk (Perozzi et al., 2014), is an unsupervised deep learning 
method that belongs to the family of random-walk based embedding 
approaches. It learns latent network representations as a function of 
first-order proximity between nodes using the skip-gram model (Miko-
lov et al., 2013), which is a popular method first introduced in the 
domain of natural language processing to compute dense word embed-
dings which preserve similarity with similar words in a lower- 
dimensional embedding. However, Deepwalk was able to learn the 
inherent properties, such as first-order node proximity only. Node2vec 
(Grover and Leskovec, 2016) introduced a hybrid learning approach that 
combines the skip-gram (Mikolov et al., 2013) model with a neighbor-
hood preserving likelihood objective using second-order Markovian 
random walks. Though an effective method, it uses several predefined 
hyper-parameters to choose between optimizing for network homophily 
or network structural equivalence. Since real-world networks exhibit 
varying levels of homophily and structural equivalence depending on 
the purpose of the network, it becomes an essential requirement to tune 
node2vec depending on the network and problem under study. Addi-
tionally, node2vec is a natural extension of Deepwalk such that the 
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walks learn the local and the global neighborhood transition of a node as 
features. 

2.2. Attention and neighborhood aggregation methods 

Attention mechanisms were first introduced in sequence to sequence 
learning in the domain of machine translation by Bahdanau et al. (2014) 
and Luong et al. (2015.) to focus on different parts of the input sequence 
at every stage of the output sequence, thereby allowing context infor-
mation to be preserved from beginning to end. Xu et al. (2015) used 
attention for image captioning tasks, while Mnih et al. (2014) applied 
attention for image classification tasks. Although attention mechanisms 
have been successfully applied to many problems, most of the existing 
work pertains to the domains of computer vision or natural language 
processing. Though graphs have an irregular structure which is non- 
Euclidean when compared to images/videos (grids) but sequential 
such as text data, attention became readily applicable to graph data with 
modifications to the traditional definition of attention mechanisms to fit 
GNNs (Lee et al., 2019). 

Neighborhood aggregation algorithms leverage node features and 
attention mechanisms to generate better node representations. Current 
GNN models are variants of message-passing architectures that use 
various neighborhood aggregation schemes to aggregate feature infor-
mation from nodes in the graph wherein such architectures can either be 
spatial (Veličković et al., 2017; Hamilton et al., 2017) or spectral (Kipf 
and Welling, 2016). Graph Convolutional Networks (Kipf and Welling, 
2016) uses a spectral rule that employs graph convolutional layers to 
learn node embeddings by aggregating one-hop local graph structures 
and features of nodes to obtain embeddings from the hidden layers; 
while Graph Attention Networks (Veličković et al., 2017) being a spatial 
approach, aggregates neighborhood information according to trainable 
attention weights using multi-head attention mechanisms. These models 
focus on learning node representations that are capable of capturing 
one-hop local network structure using a single hidden layer. Hence, 
these message passing neural networks, both spectral and spatial are not 
capable of leveraging higher-order structural features without deeper 
layers. However, increasing the number of layers in GCN or GAT has 
shown to deteriorate their performance (Li et al., 2018). 

While spectral methods have nice theoretical properties, MPNNs 

such as HO-GCN (Abu-El-Haija et al., 2018) and GraphSAGE (Hamilton 
et al., 2017) increase the neighborhood range from one-hop and make 
use of higher-order convolution layers or higher-order neighborhood 
aggregation techniques (Xu et al., 2018; Klicpera et al., 2018) to 
outperform spectral based methods. This however increases model 
complexity in order to achieve higher node classification performance 
while assuming that there is a strong correlation between node features 
and network structure. Concurrently, neglecting the existence of any 
correlation between the structural and node attribute features is also a 
strong assumption that may not hold true in all cases. Further, work such 
as Approximate Personalized Propagation of Neural Predictions 
(APPNP) (Klicpera et al., 2018) and Graph Diffusion Convolution(GDC) 
(Klicpera et al., 1335) considers higher-order neighborhood information 
by computing a stationary distribution pertaining to the random-walk 
matrix as well as the importance of the neighborhoods by incorpo-
rating a weighting scheme based on Personalized PageRank (PPR) and 
heat kernel (Chung, 2007; Donnat et al., 2018; Klicpera et al., 2018). 
These approaches however lose focus of the immediate first-order 
neighborhood of a target node by using a higher-order feature propa-
gation scheme that only considers global connectivity. Though APPNP 
uses a teleport vector with no spectral properties to preserve local 
connectivity, their final expression for the propagation scheme is similar 
to that of a limiting distribution of a random walk matrix. Additionally, 
the weighting schemes used in these approaches were originally devel-
oped to approximate a graph partitioning algorithm or specifically local 
graph partitioning (Chung, 2007) which requires constraints and pre- 
defined partition sizes. 

In this work, we first assume that high-order structural and node 
features are complementing. Second, we derive a kernel propagation 
technique that computes an optimum limiting diffusion kernel as a 
normalized discounted geometric series of the random walk matrix of 
the network. The pre-processed higher-order structural features are then 
propagated using an explicit first-order spectral definition. Further, the 
higher-order structural features are also augmented with node features 
which capture network-dependent node characteristics relevant for 
discriminating structurally equivalent structures. Such a technique is 
capable of capturing network and node independent features since the 
proposed discounted geometric approximation is a variation of the 
weighting scheme used in capturing community structure from real- 

Fig. 1. Proposed Architecture for combining higher-order structural features with first-order feature propagation scheme. Each dotted circle within the network 
represents the t-hop neighborhood of node i. The figure provides a visual flow of the data from the network form. 
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world networks (Girvan and Newman, 2002), thus enabling node clas-
sification performance on par with the state of the art methods. Hence, 
this motivates the need for hybrid GNN models that are capable of 
combining network independent and network-dependent features, as it 
is clear that position aware (local and global) approaches are necessary 
(Xu et al., 2018; You et al., 2019) to improve the performance of GNNs in 
link prediction and classification tasks. 

3. Kernel propagation technique 

3.1. Notations 

A network G := {V ,E } is an order 2 Tensor such that G ∈ RN×N 

where N represents the number of users or V such that V ∈ RN and E :

= {(i, j)|i, j ∈ V × V , i ∕= j,E ⊆V × V } is the set of all pairs of 
distinct nodes, called edges. For every node i ∈ V , the degree d(i) is the 
number of edges leaving or entering i, such that d(i) =

∑
jAij, where 

Aij ∈ A and A denotes the adjacency matrix while D denotes the degree 
matrix of G . We introduce L which denotes the semi-supervised loss 
with respect to the labeled part of the graph and f(.) be a neural network. 
Let X denote the node features matrix. We define H(l) = [h(l)

1 ,h(l)
2 ,…,h(l)

N ] 
as the hidden layer representation of the network in the lth layer of f(.)
where h(l)

i ∈ RN represents node i. Fig. 1 presents an overview of our 

proposed method for learning node representations from a network G 

and performing node classification in a complete end to end manner. 
The figure depicts an example of how node i’s representation is 
computed and is later used for node classification. The following sec-
tions describe the method in detail. 

3.2. Kernel propagation layer 

Following (Kipf and Welling, 2016), we define the following layer- 
wise propagation technique: 

H(l+1) = σ
(

D̃
− 0.5

ÃD̃
− 0.5

H(l)W(l)
)

(1)  

In Eq. (1), Ã = A+IN, D̃ = D + IN, where, IN is an identity matrix of 
shape (N,N), D̃ii =

∑
jÃij, σ(.) denotes a non-linear activation function 

such as ReLU(.), H(0) = X and W(l) is a layer-specific trainable weight 
matrix. The graph convolutional layer above represents each node i as an 
aggregate of its neighborhood N i such that it includes itself as a result of 
self-loops. 

Given the adjacency matrix of the network, we compute the random 
walk transition matrix which provides information on the probability of 
node transitions within the network. The random walk transition matrix 
(P) represents the probability of a node (i) diffusing information or 

Fig. 2. Difference between the attention mechanism used in GAT and the proposed AKP.  

S.K. Arul Prakash and C.S. Tucker                                                                                                                                                                                                         



Expert Systems With Applications 174 (2021) 114655

5

forming an edge with another node (j) given the previous state of the 
nodes where P = Pij = Pr(j

⃒
⃒i) is a conditional probability which repre-

sents the probability of a node (i) transitioning from i to j in one step. In 
our proposed update rule, we enable feature augmentation by concat-
enating the node features matrix (X) with an optimal t-hop diffusion 
affinity matrix/kernel Π* which is a network independent feature matrix 
derived from network topology (adjacency matrix). We define random 
walk transition matrix as Prw = AD− 1. Since the graph convolutional 
layer uses a normalized symmetric adjacency matrix with self loops, we 

calculate transition matrix using Ã as P̂ = D̃
− 0.5

ÃD̃
− 0.5

D̃
− 1

. We derive 
the expression for Π, the diffusion kernel as follows: 

Π =
∑∞

t=0
P̂

t
(2)  

Expanding Π, we rewrite Eq. (2) as (IN + P̂
1
+ P̂

2
+ … + P̂

∞
), which 

can further be simplified as (IN − P̂)− 1 using the result of the geometric 
series where, P̂ij < 1. We further normalize (symmetric normalization 

can also be performed) the expression (IN − P̂)− 1 as (IN − P̂)− 1 D̂
− 1 

where, D̂
− 1 

is the degree matrix of the expression (IN − P̂)− 1. However, 
computing (IN − P̂)− 1 poses a serious drawback in that, it may not be 
possible to compute the inverse of matrix with huge number of nodes 
without significant computing resources. Hence, as a workaround, we 
compute an optimal Π* in just a few exponentials by introducing a dis-
count factor γ such that γ ∈ [0, 1] and the expression we are trying to 
compute above is modified as (IN − γP̂)− 1. This expression, unlike 
personalized page rank (PPR), does not take into consideration the root 
node and assumes no hierarchical node ordering in terms of node 
importance. Instead, γ weights all paths (node independent and node 
dependent paths) of a particular path length t by a factor γt. 

From Lemma 1 (see appendix for proof), and since γ < 1, we know 
‖M

(t)(Π̃) − M (t)(Π)‖∞ ⩽γ(t)‖Π̃ − Π‖∞, thus converging to a limit Π* for 
t≪∞. Given that we have derived a converging limit Π*, we now state 
the kernel (because of the similarity of (IN − γP̂)− 1 with regularized 
graph Laplacian kernel (Smola and Kondor, 2003)) propagation tech-
nique as follows. 

H(l+1) = σ
((

D̃
− 0.5

ÃD̃
− 0.5)([

Π* D̂
− 1
,X
])

W(l)
)

(3)  

Following equation Eq. (1), we augment H(0), which is the node features 
matrix (X) with the normalized t-hop diffusion kernel, when l = 0. The 
concatenated feature matrix re-weights the normalized symmetric ad-
jacency matrix, using node features and higher-order neighborhood 
information. In the next section, we describe the multiplicative aggre-
gation method which aggregates the hidden representations of the nodes 
such that nodes that belong to the same community are closer in the 
embedding space. 

3.3. Multi-head multiplicative attention mechanism 

The output from the kernel propagation layer produces a new set of 

node representations H(l+1) = [h(l+1)
1 ,h(l+1)

2 ,…,h(l+1)
N ] where, h(l+1)

i ∈ RÑ 

represents node i’s features in the (l+1) layer. Attention mechanism in 
its general formulation allows every node representation to attend on 
every other node’s representation. To preserve graph structure in the 
node representations computed from the propagation step, we perform a 

masked shared attentional mechanism (Veličković et al., 2017) a : RÑ X 

RÑ⟶R following the modified GCN layer, which is parametrized by a 

weight matrix, W(l+1) ∈ RÑxN. In our work, instead of applying a to the 
concatenated representations of i and j, we employ a multiplicative 
Hadamard product attention. This decreases the number of hidden layer 

parameters to be learned by 50%. Fig. 2 presents an illustration of the 
difference between the attention mechanism employed in this paper and 
GAT. Following the transformations, the importance of node j’s hidden 
representation to node i’s representations is captured as follows, 

eij = a
(

Wh(l+1)
i ⊙ Wh(l+1)

j

)
(4)  

We compute eij for nodes j which are in the neighborhood (N i) of node i. 
In our experiments, the neighborhood (N i) will be the first-order 
neighbors of i, including i. The shared attention mechanism a is a 
single-layer feedforward neural network, parametrized by a such that 

a ∈ RÑ which is then subject to a non-linear activation function ∊(.) such 
as LeakyReLU(.). However, the Hadamard product of the representa-
tions need to be scaled in order to avoid exploding products, which in 
turn makes softmax gradients extremely small (Vaswani et al., 2017). To 
counteract this effect, the Hadamard products are scaled using 

̅̅̅̅
K

√
as 

shown in Eq. (5) where, K represents the number of heads used in 
computing the attention coefficients. Following the LeakyReLU non- 
linear activation (∊(.)), the attention coefficients computed by the 
attention mechanism are expressed as: 

αij =

exp∊

(
Wh(l+1)

i (Wh(l+1)
j )

T

̅̅̅
K

√

)

∑

c∈N i

exp∊

(
Wh(l+1)

i (Wh(l+1)
c )

T

̅̅̅
K

√

) (5)  

The normalized attention coefficients as computed using Eq. (5) are then 
linearly combined with respect to each node’s hidden representation 
from layer (l) after applying a non-linearity η(.) such as Exponential 
Linear Unit (ELU) as shown below. 

h̃i
(l+1)

= η
(
∑

j∈N i

αijWh(l)
j

)

(6)  

Additionally, we employ multi-head attention similar to Vaswani et al. 
(2017) to stabilize the learning process of self-attention. In our experi-
ments, we implement K independent attention mechanisms. 

3.4. Semi-supervised node classification 

Having introduced the kernel propagation layer and the multi-head 
attentional layer, we define the KP/AKP-GNN model as f(Ã,Π*) and 
address the problem of semi-supervised node classification by training 
our model using task-specific loss function. The complete forward 
propagation of our two layer model with a softmax activation on the 
final layer is defined as follows: 

Ŷ = f
(

Ã,Π∗
)
= softmax

(
α
(

σ
((

D̃
− 0.5

ÃD̃
− 0.5)([

Π∗ D̂
− 1
,X
])

W(0)
))

W1
)

(7)  

where, W0 ∈ R(N+C)xÑ,W1 ∈ R(KxÑ)xω,C is the number of column di-
mensions of a node’s feature vector (Xi) and ω is the number of final 
hidden layer neurons. The loss function (L ) for the multi-class node 
classification task is evaluated as the cross-entropy error over the 
labelled examples as follows: 

L = −
∑

i∈V L

∑S

s=1

[

YislnŶ is

]

(8)  

Here, V L is the set of nodes in the training data for which class labels are 
available, while S denotes the number of classes such that s ∈ S,Y is the 
matrix of ground-truth one hot encoding denoting the class assignment 
per node and Ŷ is the final layer predictions of the AKP-GCN model. The 
network weights are trained end-to-end using the gradient descent 
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algorithm. 

4. Experiments and discussion 

We validate the feasibility of our algorithm against widely used 
datasets by performing a multi-class, single-label classification to vali-
date the performance of the proposed algorithm in classifying nodes 
based on the learned node representations. This section introduces the 
experimental settings, followed by experimental results, and finally 
discusses the results. The statistics of the datasets used in this work are 
given in Table 1. 

4.1. Experimental settings 

4.1.1. Baseline methods 
The choice of methods to benchmark against was motivated by 

publication year, relevance to the proposed method, and current state of 
the art. We benchmark our method with the following:  

• Node2vec (Grover and Leskovec, 2016): This method also belongs to 
the family of random-walk based approaches and generalizes the 
Deepwalk approach. Node2vec performs a second-order proximity 
learning, where random walks are traversed breadth-wise and depth- 
wise, unlike Deepwalk which performs a 1st order proximity 
learning.  

• GCN (Kipf and Welling, 2016): GCN is one of the most popular GNN 
models with most of the recent work and applications being built on 
top of this architecture. The spectral rule as proposed by GCN can 
represent a one-hop node neighborhood with a single layer and re-
quires additional layers for aggregating higher-order node neigh-
borhoods. Our method is a natural variant of the GCN.  

• GAT (Veličković et al., 2017): GAT is an extension of GCN with an 
aggregation based methodology, which employs self-attention with 
weight sharing to place similar node representations from one-hop 
neighborhoods closer together in the embedding space.  

• JK-Net (Xu et al., 2018): This work advances the use of deep graph 
neural networks, especially GCN which typically suffers from over- 
smoothing with deeper layers (Oono and Suzuki, 2019). The au-
thors propose an architecture that selectively combines different 
aggregations at the final layer – jumping knowledge (JK) networks.  

• APPNP (Klicpera et al., 2018): This work advances the use of higher- 
order neighborhood information in a forward propagation scheme 
where the neighborhood is weighted using a heat kernel or PPR co-
efficients. Further, this approach disentangles the propagation 
technique from the feature predictions scheme thereby enabling the 
use of deeper layers without being susceptible to over-smoothing.  

• GDC (Klicpera et al., 1335): The graph diffusion convolution 
approach proposes to remove the restriction of only considering the 
first-order neighborhood through the introduction of a generalized 
graph diffusion. GDC is a GNN that combines the strengths of spatial 
and spectral methods. This approach deviates from that of the pro-
posed approach since we consider higher-order structural informa-
tion as features and further uses a general weighting scheme that 
captures structural information as node independent features. 

4.1.2. Network statistics 
We compare the methods described in sub-Section 4.1.1 by 

comparing the node classification accuracies on commonly used citation 
networks such as Cora, Citeseer and PubMed. In addition to the small- 
scale networks, we benchmark and evaluate the proposed approach 
and the comparing approaches on large-scale real-world networks 
published in the open graph benchmark (ogb) project (Hu et al., 2020). 
In this paper, since the problem under study is a node classification 
problem, we use the ogb-proteins, ogb-arxiv and the ogb-products 
datasets to benchmark the proposed approach. These datasets were 
chosen based on the nature of the networks (homogeneous graphs), and 
the size of the network (so as to fit the entire graph in the GPU memory) 
without resorting to batching techniques since they are not the focus of 
this study. Further, nodes in all the networks under study have node 
features, except for the ogb-proteins network which contains edge fea-
tures. The dataset statistics are summarized in Table 1. For the small- 
scale real world networks under study, we use 15% of the nodes for 
training, 500 nodes for validation and testing. For the networks from the 
ogb project, we use the same training, validation and test split as used in 
their paper. In the results section, we report the average results of 3 runs 
for each of the methods. 

4.1.3. Cora, citeseer and PubMed networks 
In the experiments that use the small-scale networks, we set the 

number of KP-GCN and AKP-GCN hidden layers as one. The number of 
hidden units in the convolution layer is set as 64 for Cora and Citeseer, 
and 128 for PubMed. For the attentional layer, we use 4 attention heads 
for Cora, Citeseer and PubMed datasets. The hyper-parameters for our 
models are set as follows: dropout rate = 0.5, alpha value for LeakyReLU 
as 0.2, weight decay (L2 Norm) as 5e− 4 and discount factor (γ) as 0.99. 
We use Xavier initialization (Glorot and Bengio, 2010) for all weight and 
attention matrices. For the optimization, we use Adam (Kingma and Ba, 
2014) with a fixed learning rate of 0.02 and set the number of training 
epochs as 50. 

4.1.4. OGB networks 
In the experiments which use the ogb networks, we set the number of 

hidden layers as 2 and the number of attention heads as 4. The number 
of hidden units in the final layer is set as 128. Due to GPU memory 
constraints, we were unable to implement the attention mechanism on 
the ogb-proteins and ogb-products networks. The remaining hyper- 
parameters for all models are set as follows: dropout rate  = 0.5, atten-
tion dropout  = 0.0, alpha value for LeakyReLU  = 0.1, discount factor 
(γ) = 0.99 and training epochs per run  = 200. 

4.2. Experimental results and discussion 

4.2.1. AKP-GCN models 
In order to contrast and discuss the contributions and advantages of 

the proposed method, we introduce multiple versions of our model as 
follows:  

1. KP-GCN using structural features and/or node features and no 
attention mechanism for a GCN architecture. 

2. AKP-GCN using structural features and/or node features and pro-
posed attention mechanism for a GCN architecture. 

Table 1 
Network Statistics and training/validation split (Multi-class, Single-label (MC, SL), Multi-class, Multi-label (MC,ML).   

Cora Citeseer PubMed ogbn-proteins ogbn-arxiv ogbn-products 

Nodes 2708 3312 19,717 132,534 169,343 2,449,029 
Edges 5429 4732 44,324 39,561,252 1,166,243 61,859,140 
Node/edge features 1433 3703 500 8 128 100 
Classes 7 6 3 112 40 47 
Classification type MC, SL MC, SL MC, SL MC, ML MC, SL MC, SL  
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3. KP-GAT using structural features and/or node features and no 
attention mechanism for a GAT architecture.  

4. KP-JK Net using structural features and/or node features and no 
attention mechanism for a JK Net architecture. 

We have publicly made available the official version of the codebase 
pertaining to this work in GitHub and have ensured computational 
reproducibility using Code Ocean. Interested readers can refer to the 
following resources.1,2 

Table 2 illustrates the computational time complexity for each of the 
models (2 layers) proposed above. Since the pre-processing step com-
putes a t-hop power series of a transition matrix, the time complexity is 
O (N3). Since we did not modify the internal architecture of GCN, GAT 

and JK Net, we use the computational time complexities reported in the 
respective papers while modifying the variables depending on the size of 
the input and that of the intermediate steps. The computational 
complexity reported for attention based model is for one attention head. 

4.3. Parameter settings 

4.3.1. Visualization and convergence analysis 
Figs. 3–5 visualize the learned network embeddings for Cora, Cite-

seer and PubMed networks when using attention, structural and node 
attribute information. From the learned embeddings, it is evident that 
learning with node features or learning using the proposed diffusion 
kernel produces a similar discrimination of the different classes in a 2 
dimensional feature space, while when concatenated together, produces 
a different discrimination in the case of Cora and Citeseer networks as 
shown by Figs. 3c and 4c. We omit visualizing the other three data sets 
since there exists far too many classes and nodes to visualize the 
discrimination between classes. 

Figs. 6 and 7 illustrates the convergence of the proposed models 
trained using Cora network, where the proposed attention mechanism 
helps prevent model over-fitting (training loss is significantly lower than 
validation loss) during training, leading to a stable model convergence. 
Further, we find that the generalization gap between validation and 
testing accuracies for Cora, Citeseer and PubMed to be negligible when 
AKP-GCN model is utilized for training and testing. Additionally, we also 
observe that concatenating structural information along with node- 
attribute information helps the model optimize an easier loss 

Fig. 3. (a) Learned Cora embedding using structural features and attention (b) Learned Cora embedding using node features and attention (c) Learned Cora 
embedding using structural features, node features and attention. 

Table 2 
Computational complexity of proposed models.   

Computational complexity 

KP-GCN O (N3) + O (

⃒
⃒
⃒E

⃒
⃒
⃒(N + C)Ñω)

AKP-GCN O (N3) + O (

⃒
⃒
⃒E

⃒
⃒
⃒(N + C)Ñω) + O (N2ω +

⃒
⃒
⃒E
⃒
⃒
⃒ω)

KP-GAT O (N3) + O (N(N + C)Ñω +

⃒
⃒
⃒E
⃒
⃒
⃒Ñω)

KP-JK Net O (N3) + O (

⃒
⃒
⃒E

⃒
⃒
⃒(N + C)Ñω)

1 https://github.com/AiPEX-Lab/Kernel-Propagation-in-Graph-Neural- 
Networks.  

2 https://codeocean.com/capsule/4740198/tree. 
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landscape (starting accuracy tends to be high, loss tends to be low) 
leading to a better model fit. 

However, for the other three datasets, namely the ogbn-proteins, 
ogbn-arxiv and ogbn-products, we observe and report the existence of 
a generalization gap (as defined in Hu et al. (2020)) while using the 
proposed models as well as the comparing approaches. In the next sec-
tion, we quantify the accuracies and discuss the merits of the various 
models used in the study. 

4.3.2. Comparison between methods and discussion of experimental results 
Table 3 displays the classification accuracy of the various methods on 

the citation networks. Our method achieves superior classification per-
formance in comparison to the other methods. The kernel propagating 
layer in the absence of node features and with/without attention 
mechanism achieves comparable accuracy with respect to other 
methods and model variations, while the concatenated structural and 
node attribute features with/without attention mechanism achieves 
state of the art performance on the Cora and PubMed networks. Though 
we find that structural features and node attribute features complement 
each other, when node features are unavailable, network-independent 
structural features can be used in their place without loss in accuracy. 
However, the node-features only model performed node classification 

with comparable accuracy on the Citeseer network against our model 
which uses node-features and structural features. Hence, we observe 
that networks have an influence on how much information is encoded as 
topology versus node features. In the case of the Cora network, struc-
tural features can improve node classification performance when com-
bined with node features. A similar case is observable for the PubMed 
network as well. A possible reason for this scenario is the lower nodes to 
edges ratio in the Cora and PubMed networks as well as the number of 
node features being fewer than the number of nodes in the Citeseer 
network. Hence node features enable better classification in the Citeseer 
network which seems to present more importance to the behavior of the 
nodes as opposed to node links while node features and structural fea-
tures enable better discrimination of nodes in the other two networks. 
Further, by using the PubMed network where the number of nodes is of 
an order of magnitude more than the Cora and Citeseer networks, we 
show that our propagation technique is scalable to large networks. 

The small-scale citation networks have been a topic of criticism 
within the representation learning community since their network sizes 
are not comparable to real-world networks that are orders of magnitude 
larger and realistic. Hence, to validate the performance of the proposed 
approach on existing GNNs, we perform experiments on large-scale ogb 
datasets. Further, as noted by Hu et al. (2020), we find the training, 

Fig. 4. (a) Learned Citeseer embedding using structural features and attention (b) Learned Citeseer embedding using node features and attention (c) Learned Citeseer 
embedding using structural features, node features and attention. 
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validation and testing splits of the ogb datasets to be realistic and suit-
able for real-world deployment. In Table 4, we compare the validation 
and training accuracies of the pre-processing step on the ogb-arxiv 
network using GCN, GAT and JK Net variants using our proposed 
approach. In our experiments, we test our proposed approach against 
the baseline methods with node features (denoted by X) and without 
node features (denoted by I which is an identity matrix that replaces X). 
We find our KP-GAT model to outperform other approaches by a margin 
of approximately 0.4% on average, and further note that our models are 
able to improve the node classification accuracy of GCN, GAT and JK 
Net. When compared to GDC which is also a pre-processing step, our 
approach improves the node classification accuracy by a significant 
margin. This highlights the inherent problem of lost focus of one-hop 
neighborhood connectivity since the propagation scheme implemented 
in GDC is of higher-order. Further, we notice that our KP-GAT imple-
mentation which makes use of only higher-order neighborhood struc-
ture outperforms GCN, GAT and JK Net when no node features are 
considered. This highlights the ability of the proposed approach to 
identify meaningful structural information when node features are un-
available. We also note that including node features further improves 
the performance of our approach applied to GNNs. 

Now we consider the ogb-products network, which is a sales network 

and is also the largest network considered in this study. Given the size of 
the network, we were unable to fit any attention models in the GPU and 
found training using CPU to be significantly time-consuming (approxi-
mately 3–4 days to run 200 epochs per run for a total of three runs per 
GNN variant). We were unable to find any GAT results from the ogb 
paper (Hu et al., 2020) for this dataset. We report our results in Table 5. 
We compare the validation and training accuracies of our approaches 
with the baseline methods. We report and compare the results of our 
approach applied to multiple GNN variants with the baseline approaches 
while considering node features (denoted by X) and excluding node 
features (denoted by I which is an identity matrix that replaces X). We 

find our KP-JK Net ([X, Π* D̂
− 1

]) model outperforms other approaches 
by a margin of approximately 1.0% on average. We further note that our 
approach can improve the node classification accuracy of GCN and JK 
Net by approximately 3.5% on average when considering node features 
and higher-order structural features. Further, we note that GCN and 
APPNP perform significantly better when node features are not utilized 
during training. This shows that the node features pertaining to the ogb- 
products network could be complex, leading to no learning, as opposed 
to just learning self-attention. The training results further emphasize the 
rich implicit higher-order structural information of the network which 
can replace node features even when they are available. 

Fig. 5. (a) Learned PubMed embedding using structural features and attention (b) Learned PubMed embedding using node features and attention (c) Learned 
PubMed embedding using structural features, node features and attention. 
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Finally, we consider the ogb-proteins network, which unlike the 
earlier networks, is a biological network expressing the relational in-
formation between functional protein components. Additionally, we 
note that this protein network is denser in comparison to the other ogb 
networks under study. Due to the density of the network, we were un-
able to fit any attention models in the GPU. We report our results in 
Table 6. Since this is a multi-class, multi-label classification, we report 
the Receiver Operating Characteristics-Area Under the Curve (ROC- 
AUC) score in percentage. We observe the KP-GCN model which does 
not consider any node features outperforms the state of the art methods. 
Further, we note that the classification performance of all methods 
improved in the presence of an identity matrix (absence of node fea-
tures), which reveals the importance of self-attention as features for this 
network. Due to the nature/form in which the ogb-proteins network is 
available in the official ogb database, we were unable to convert it to a 
form suitable for ingestion by the official version of the GDC. As a result, 
we did not include the results pertaining to GDC-GCN and GDC-JK Net 
for this particular dataset. Further, we find that with exception to the 

following variant of KP-GCN ([I, Π* D̂
− 1

]), using higher-order structural 
information deteriorated the performance of GCN and JK Net by using 
our approach. This highlights the presence of valuable information from 

self-attention as features as opposed to node features in the ogb-proteins 
network. Additionally, a model such as GCN with no residual connec-
tions like JK Net is observed to perform well in the presence of higher- 
order features and self-attention as opposed to just self-attention or 
higher-order structural features. Hence, the proteins network can be 
concluded to have significant information in the form of self-attention 
and higher-order information that can efficiently be learned using less 
complex models such as GCN. 

Based on our experiments, the ideal configuration for achieving the 
best classification performance involves using both the structural and 
node attribute features to learn meaningful representations. However, 
from our experiments, we find that the configuration is dependent on the 
network. The kernel propagation layer essentially captures higher-order 
neighborhood information along with the local structure without the 
need for any attention mechanism even when attention models don’t fit 
in memory. Since our method proposes a pre-processing step applied to 
GCN, GAT and JK Net, it exhibits the same memory and time complexity 
as these models with the addition of the time complexity required to 
compute the t-hop random walk matrix. Hence, by combining structural 
information in the form of higher powers of random walk matrix and 
positional features such as node features (You et al., 2019), our kernel 

Fig. 6. (a) Cora loss convergence with structural features and no attention (b) Cora loss convergence with node features and no attention (c) Cora loss convergence 
with structural features, node features and no attention. 
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Fig. 7. (a) Cora loss convergence with structural features and attention (b) Cora loss convergence with node features and attention (c) Cora loss convergence with 
structural features, node features and attention. 

S.K. Arul Prakash and C.S. Tucker                                                                                                                                                                                                         



Expert Systems With Applications 174 (2021) 114655

12

propagating layer is also able to address the problem of sub-structure of 
isomorphism. 

5. Conclusions 

In this work, we show that computing node independent structural 
features as input features for each node in the network enables existing 
models to perform on par with or better than approaches which consider 
only node features by following a first-order spectral propagation 
scheme. Additionally, if such node features are unavailable, higher- 
order structural features can be used for node classification. Node fea-
tures have shown to improve node classification because of the addi-
tional information it provides to differentiate between nodes which have 
similar sub-structure node arrangements. Hence node features can be 
used concurrently along with structural features. This work motivates 
research in the direction of deriving node independent structural fea-
tures which can enable encoding higher-order neighborhood informa-
tion alongside node features which complements structural information. 
Future work will explore independence between structural and node 
attribute features so that we understand the influence of topology and 
node features on a given network, to then inform the appropriate choice 
of network configuration for learning node representations from a 
diverse range of real-world networks. 

Table 3 
Classification accuracies on small-scale real world networks ([.,.] denotes 
feature concatenation).  

Method Data used Cora Citeseer Pubmed 

Node2vec ( 
Grover and 
Leskovec, 
2016) 

A 68.66±1.83%  47.98±1.75%  72.36±0.95%  

GCN (Kipf and 
Welling, 
2016) 

A, I, Y 84.10±0.34%  68.75±0.67%  79.70±1.33%  

GCN (Kipf and 
Welling, 
2016) 

A, X, Y 85.58±0.48%  71.43±0.47%  84.00±1.10%  

GAT ( 
Veličković 
et al., 2017) 

A, I, Y 82.40±0.62%  71.25±0.43%  83.90±0.70%  

GAT ( 
Veličković 
et al., 2017) 

A, X, Y 83.34±0.47%  72.71±0.52%  83.90±0.70%  

JK Net (Xu 
et al., 2018) 

A, I, Y 81.53±0.37%  70.34±0.29%  84.40±0.40%  

JK Net (Xu 
et al., 2018) 

A, X, Y 82.60±0.43%  71.70±0.54%  84.50±0.80%  

APPNP ( 
Klicpera 
et al., 2018) 

A, I, Y 84.93±0.29%  74.84±0.46%  83.37±0.32%  

APPNP ( 
Klicpera 
et al., 2018) 

A, X, Y 85.79±0.27%  75.97±0.46%  84.10±0.72%  

GDC-GCN ( 
Klicpera 
et al., 1335) 

A, X, Y 84.70±0.30%  71.25±0.27%  82.60±0.66%  

KP-GCN A, Π* D̂
− 1

, 
Y  

85.60±0.53%  72.75±0.90%  82.20±1.10%  

AKP-GCN A, Π* D̂
− 1

, 
Y  

84.60±0.60%  73.75±0.70%  81.10±0.70%  

AKP-GCN A, X, Y 86.00±0.60%  76.00±1.00%  84.60±1.10%  
KP-GCN A, [X, 

Π* D̂
− 1

], 
Y  

87.00±0.80%  74.10±0.90%  85.10±0.80%  

AKP-GCN A, [X, 

Π* D̂
− 1

], 
Y  

87.80±0.80%  76.00±0.90%  84.50±0.60%   

Table 4 
Classification accuracies ([.,.] denotes feature concatenation).  

Method Data used ogbn-arxiv 
(Validation) 

ogbn-arxiv 
(Test) 

Node2vec (Grover and 
Leskovec, 2016) 

A 69.23±0.13%  66.71±0.14%  

GCN (Kipf and Welling, 
2016) 

A, I, Y 68.42±0.34%  66.88±0.89%  

GCN (Kipf and Welling, 
2016) 

A, X, Y 71.22±0.03%  70.56±0.28%  

GAT (Veličković et al., 
2017) 

A, I, Y 68.97±0.41%  67.62±0.74%  

GAT (Veličković et al., 
2017) 

A, X, Y 71.71±0.04%  70.69±0.48%  

JK Net (Xu et al., 2018) A, I, Y 64.49±0.26%  61.35±0.62%  
JK Net (Xu et al., 2018) A, X, Y 71.29±0.09%  69.67±0.46%  
APPNP (Klicpera et al., 

2018) 
A, I, Y 70.52±0.29%  69.14±0.43%  

APPNP (Klicpera et al., 
2018) 

A, X, Y 71.39±0.19%  70.09±0.32%  

GDC-GCN (Klicpera 
et al., 1335) 

T, X, Y 69.44±0.01%  65.93±0.15%  

GDC-JK Net (Klicpera 
et al., 1335) 

T, X, Y 68.57±0.27%  65.21±0.45%  

KP-GCN A, Π* D̂
− 1

, Y  69.98±0.12%  68.69±0.26%  

KP-GAT A, Π* D̂
− 1

, Y  70.14±0.04%  68.82±0.17%  

KP-JK Net A, Π* D̂
− 1

, Y  67.81±0.09%  65.78±0.04%  

KP-GCN A, [X, 

Π* D̂
− 1

], Y  

71.55±0.30%  70.63±0.08%  

KP-GAT A, [X, 

Π* D̂
− 1

], Y  

72.08±0.11%  71.17±0.19%  

KP-JK Net A, [X, 

Π* D̂
− 1

], Y  

71.82±0.22%  70.20±0.21%   

Table 5 
Classification accuracies ([.,.] denotes feature concatenation).  

Method Data Used ogbn-products 
(Validation) 

ogbn-products 
(Test) 

Node2vec (Grover and 
Leskovec, 2016) 

A 86.32±0.06%  68.49±0.10%  

GCN (Kipf and Welling, 
2016) 

A, I, Y 90.97±0.07%  71.20±0.55%  

GCN (Kipf and Welling, 
2016) 

A, X, Y 88.06±0.12%  68.86±0.26%  

JK Net (Xu et al., 2018) A, I, Y 87.50±0.06%  56.78±1.06%  

JK Net (Xu et al., 2018) A, X, Y 88.70±0.08%  69.57±0.06%  

APPNP (Klicpera et al., 
2018) 

A, I, Y 91.69±0.05%  73.93±0.33%  

APPNP (Klicpera et al., 
2018) 

A, X, Y 89.45±0.03%  73.05±0.07%  

GDC-GCN (Klicpera 
et al., 1335) 

A, X, Y 87.81±0.06%  66.06±0.08%  

GDC-JK Net (Klicpera 
et al., 1335) 

A, X, Y 88.83±0.09%  67.17±0.03%  

KP-GCN A, Π* D̂
− 1

, Y  91.85±0.07%  74.16±0.41%  

KP-GCN A, [X, 

Π* D̂
− 1

], Y  

91.85±0.12%  74.04±0.10%  

KP-JK Net A, Π* D̂
− 1

, Y  91.23±0.05%  70.03±0.12%  

KP-JK Net A, [X, 

Π* D̂
− 1

], Y  

92.34±0.05%  74.80±0.66%   
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Appendix A. Proof of convergence for the kernel propagation technique 

Lemma 1. A mapping M : Π⟶Π is a contraction mapping. 

‖M (Π̃) − M (Π)‖∞⩽γ‖Π̃ − Π‖∞ (9)  

where, M (Π̃) = IN +γP̂Π̃ and M (Π) = IN + γP̂Π 
Proof. 

‖M (Π̃) − M (Π)‖∞ = ‖IN + γP̂Π̃ − IN − γP̂Π‖∞ = ‖γP̂
(

Π̃ − Π
)
‖∞⩽γ‖P̂‖∞‖Π̃ − Π‖∞ (10)  

Since we know that a transition probability matrix is a right stochastic matrix, 
⃦
⃦
⃦P̂‖∞ = maxi

∑
j P̂(i, j) = 1. Hence, Eq. (4) simplifies to, 

‖M (Π̃) − M (Π)‖∞⩽γ‖Π̃ − Π‖∞ (11)  

Appendix B. Additional experimental details 

All experiments were conducted on a desktop with the following configuration:  

• Operating System: Ubuntu 18.04.5 LTS  
• CPU: Intel Xeon(R) CPU E5-2698 v4  
• GPU: Tesla V100-DGXS-32 GB  
• Software: Python 3.7.5, Pytorch 1.4.0. 
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