
Expert Systems With Applications 174 (2021) 114655

Available online 4 February 2021
0957-4174/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Node classification using kernel propagation in graph neural networks

Sakthi Kumar Arul Prakash a, Conrad S. Tucker a,b,c,d,e,*

a Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213-3890, USA
b Department of Machine Learning, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213-3890, USA
c The Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213-3890, USA
d Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213-3890, USA
e CyLab Security and Privacy Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213-3890, USA

A R T I C L E I N F O

Keywords:
Deep learning
Node classification
Network embedding
Graph neural networks
Attention

A B S T R A C T

In this work, we introduce a kernel propagation method that enables graph neural networks (GNNs) to leverage
higher-order network structural information without increasing the complexity of the networks. Recent studies
have introduced GNNs that include higher-order neighborhood features containing global network information
by propagating node features using a higher-order feature propagation rule. Though these GNNs have shown to
improve node classification performance, they fail to include local connectivity information. Alternatively, GNNs
also concatenate increasing orders of adjacency matrix in deeper layers in order to include higher-order struc-
tural information. In addition to global network information, GNNs also make use of node features which are
network and node dependent features that serve to distinguish structurally isomorphic sub-structures within
graphs. However, such node features may not always be available or depending on the network, may lead to
deteriorating classification performance. Hence, to resolve these limitations, we propose a kernel propagation
method that introduces a pre-processing step for GNNs to leverage higher-order structural features. The higher-
order structural features are computed using a weighted random walk matrix which is node independent while
using the first-order spectral propagation rule which explicitly considers local connectivity. Through our
benchmark experiments, we find that the computed higher-order structural features are capable of replacing
node dependent features while performing node classification task with performance on par with the state of the
art approaches. Further, we also find that including both node features and higher-order structural features
increases the performance of GNNs on large scale benchmark networks considered in this study. Our results show
that considering local and global structural information as input to GNNs lead to an improvement in node
classification performance in the absence/presence of node features without loss of performance.

1. Introduction

Graphs are ubiquitous data structures that allow relational knowl-
edge about interacting entities to be efficiently stored, represented, and
inferred. One of the principal problems in machine learning on graphs is
finding an efficient way to represent information about the structure and
homophily of the interacting entities into the machine learning models.
Graph learning has enabled numerous graph analytic tasks such as
community detection (Girvan and Newman, 2002; Rosvall and Berg-
strom, 2008), link prediction (Lu and Getoor, 2003), node classification
and clustering (Perozzi et al., 2014; Grover and Leskovec, 2016; Kipf and
Welling, 2016; Li and Pi, 2019). Traditionally, most of the graph analytic
tasks have relied on manually engineered feature vectors formulated

with different graph statistics (Bhagat et al., 2011) such as clustering
coefficient and degree measures or kernels (Gärtner et al., 2010)
depending on the task. However, such approaches can be limiting in
understanding the complex relationships between nodes, as graph data
is usually high dimensional and hence may not be generalizable to all
graphs. Recent advances in representation learning (Wu et al., 2020)
using deep learning models have helped advance the performance of
aforementioned tasks by constructing an efficient mapping for each
node in a graph from a higher dimensional non-euclidean space to a
meaningful low-dimensional vector representation.

Neighborhood aggregation methods use different aggregation tech-
niques (Kipf and Welling, 2016; Veličković et al., 2017; Hamilton et al.,
2017) to aggregate feature representations from nodes in the graph to

* Corresponding author at: Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213-3890, USA.
E-mail addresses: sarulpra@andrew.cmu.edu (S.K. Arul Prakash), conradt@andrew.cmu.edu (C.S. Tucker).

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2021.114655
Received 27 March 2020; Received in revised form 23 January 2021; Accepted 23 January 2021

mailto:sarulpra@andrew.cmu.edu
mailto:conradt@andrew.cmu.edu
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2021.114655
https://doi.org/10.1016/j.eswa.2021.114655
https://doi.org/10.1016/j.eswa.2021.114655
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2021.114655&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Expert Systems With Applications 174 (2021) 114655

2

create efficient lower dimensional embeddings. However, such ap-
proaches pose risks of generalizability due to a dependence on the
availability of meta-data such as node features. In the absence of node
features, existing GNNs fail to differentiate between topologically
similar graph sub-structures within graphs (Xu et al., 2018) and as a
workaround, augment node features as one-hot encodings (Kipf and
Welling, 2016; Veličković et al., 2017) or use deeper networks.

Previous work has focused on node features (Kipf and Welling, 2016;
Veličković et al., 2017) which only provides a coarse representation of
the network to capture position/location while using spectral and spatial
approaches to compute structural features for node classification tasks.
In addition, models trained using network-dependent node features may
not generalize to other networks. Furthermore, neighborhood aggrega-
tion in baseline methods such as GCN and Graph Attention Networks
(GAT) are unable to consider higher-order neighborhood information
without increasing the number of neural network layers. However,
increasing the depth of the models results in over-smoothing of node
features (Li and Pi, 2019), wherein the representations of the nodes in
the network converge to a stationary representation, further leading to
the problem of vanishing gradients. Other approaches have looked at
increasing the depth of GNNs with a top layer densely connected with
earlier layers to concatenate/max-pool features (Xu et al., 2018),
adapting neighborhood ranges (Klicpera et al., 2018) and using higher-
order neighborhood (powers of adjacency matrix) aggregation tech-
niques (Abu-El-Haija et al., 2018; Veličković et al., 2018) as a work-
around to incorporate higher-order neighborhood representation
learning objectives.

The aforementioned approaches improve classification accuracy by
increasing the complexity of the model while assuming that there is a
strong correlation between node features and network structure. Alter-
natively, since node features and structural features indeed describe the
same network, we cannot neglect the correlation between them. Since
node features characterize nodes, they may be used to differentiate be-
tween equivalent substructures. Hence, instead of following any one of
the assumptions, we hypothesize that structural features and node-
attribute features complement one another, while structural features
are derived independently from the network without the help of node
labels nor node features. Additionally, integrating the information on
the connections of each node with the information about its features is
crucial to discriminating essential and negligible characteristics of nodes
(Bianconi et al., 2009), thereby minimizing false negatives and false
positives.

To address the limitations posed by existing learning algorithms, we
propose a kernel propagating graph neural network (KP-GNN) which
makes the following contributions:

1. A pre-processing step that captures higher-order neighborhood in-
formation from a symmetric normalized adjacency matrix to
compute a discounted t-hop diffusion affinity matrix that captures
diffusion strength between nodes in a t-hop neighborhood. Such a
feature representation captures higher-order structural information
as an approximate limiting distribution of the normalized random
walk matrix.

2. A kernel propagation technique that uses a first-order feature prop-
agation rule which preserves target nodes’ immediate neighborhood
while propagating the pre-computed higher-order structural features
and node features using a message passing neural network
architecture.

3. A scaled Hadamard-product attention mechanism which reduces the
number of hidden neurons/parameters by half in an attention head
such as GAT while stabilizing the losses during training and valida-
tion. The use of the attention mechanism transforms KP-GNN to an
attentional kernel propagating graph neural network (AKP-GNN).

4. An approach that shows node features can be replaced with higher-
order structural features without loss of classification accuracy for all
networks considered in this study. This contribution allows existing

GNNs to be independent of node features when they are unavailable
or missing while boosting the performance of GNNs when such fea-
tures are available.

We validate the performance of AKP-GCN by comparing it with state
of the art representative graph embedding methods, which includes
node2vec (Grover and Leskovec, 2016), GCN (Kipf and Welling, 2016),
GAT (Graph Attention Network) (Veličković et al., 2017), JK Net
(Jumping Knowledge Network) (Xu et al., 2018), APPNP (Klicpera et al.,
2018) and GDC (Graph Diffusion Convolution) (Klicpera et al., 1335).
We test these methods using three benchmark small-scale real-world
datasets and three benchmark large-scale real-world datasets on a node
classification task. The experimental evaluation validates the perfor-
mance of the proposed propagation technique.

The remainder of the paper is organized as follows. This section
provides an introduction and motivation for this work. Section 2 pro-
vides the background of related works. Section 3 provides preliminary
concepts, definitions, and describes the proposed method in detail.
Section 4 describes the statistics of the datasets, hyper-parameters for
reproducing the work, methods being compared, followed by results and
discussion. Section 5 concludes the paper.

2. Related work

2.1. Random-walk based approaches

Representation learning-based approaches embed the network onto
a lower-dimensional vector space where information about the topology
and communities of the network are preserved. The existing node rep-
resentation algorithms can be classified as preserving the structural
equivalence (topology) of a network, the homophily (similarity in
communities) of a network, or a hybrid of both approaches (Grover and
Leskovec, 2016). Homophily based methods include graph factorization
(Belkin and Niyogi, 2002; Tang and Liu, 2011), structural equivalence
methods include random walk and graph factorization (Henderson et al.,
1450; Ribeiro et al., 1450) approaches, while hybrid methods (Perozzi
et al., 2014; Grover and Leskovec, 2016; Qiu et al., 1450) incorporate
objective functions capable of learning the network’s homophily and
topology with comparable computational efficiency. Other approaches
in the literature include metric/modularity-based algorithms (Girvan
and Newman, 2002; Newman and Girvan, 2004; Yang and Leskovec,
2015) and attributed graphs algorithms (Wang et al., 2016; Kipf and
Welling, 2016; He et al., 2017; Veličković et al., 2017; Li et al., 2018)
that are an augmentation of topology based methods wherein networks
such as citation networks have nodes that contain attribute information
also called node features that are important for downstream tasks such as
node classification and link prediction.

Deepwalk (Perozzi et al., 2014), is an unsupervised deep learning
method that belongs to the family of random-walk based embedding
approaches. It learns latent network representations as a function of
first-order proximity between nodes using the skip-gram model (Miko-
lov et al., 2013), which is a popular method first introduced in the
domain of natural language processing to compute dense word embed-
dings which preserve similarity with similar words in a lower-
dimensional embedding. However, Deepwalk was able to learn the
inherent properties, such as first-order node proximity only. Node2vec
(Grover and Leskovec, 2016) introduced a hybrid learning approach that
combines the skip-gram (Mikolov et al., 2013) model with a neighbor-
hood preserving likelihood objective using second-order Markovian
random walks. Though an effective method, it uses several predefined
hyper-parameters to choose between optimizing for network homophily
or network structural equivalence. Since real-world networks exhibit
varying levels of homophily and structural equivalence depending on
the purpose of the network, it becomes an essential requirement to tune
node2vec depending on the network and problem under study. Addi-
tionally, node2vec is a natural extension of Deepwalk such that the

S.K. Arul Prakash and C.S. Tucker

Expert Systems With Applications 174 (2021) 114655

3

walks learn the local and the global neighborhood transition of a node as
features.

2.2. Attention and neighborhood aggregation methods

Attention mechanisms were first introduced in sequence to sequence
learning in the domain of machine translation by Bahdanau et al. (2014)
and Luong et al. (2015.) to focus on different parts of the input sequence
at every stage of the output sequence, thereby allowing context infor-
mation to be preserved from beginning to end. Xu et al. (2015) used
attention for image captioning tasks, while Mnih et al. (2014) applied
attention for image classification tasks. Although attention mechanisms
have been successfully applied to many problems, most of the existing
work pertains to the domains of computer vision or natural language
processing. Though graphs have an irregular structure which is non-
Euclidean when compared to images/videos (grids) but sequential
such as text data, attention became readily applicable to graph data with
modifications to the traditional definition of attention mechanisms to fit
GNNs (Lee et al., 2019).

Neighborhood aggregation algorithms leverage node features and
attention mechanisms to generate better node representations. Current
GNN models are variants of message-passing architectures that use
various neighborhood aggregation schemes to aggregate feature infor-
mation from nodes in the graph wherein such architectures can either be
spatial (Veličković et al., 2017; Hamilton et al., 2017) or spectral (Kipf
and Welling, 2016). Graph Convolutional Networks (Kipf and Welling,
2016) uses a spectral rule that employs graph convolutional layers to
learn node embeddings by aggregating one-hop local graph structures
and features of nodes to obtain embeddings from the hidden layers;
while Graph Attention Networks (Veličković et al., 2017) being a spatial
approach, aggregates neighborhood information according to trainable
attention weights using multi-head attention mechanisms. These models
focus on learning node representations that are capable of capturing
one-hop local network structure using a single hidden layer. Hence,
these message passing neural networks, both spectral and spatial are not
capable of leveraging higher-order structural features without deeper
layers. However, increasing the number of layers in GCN or GAT has
shown to deteriorate their performance (Li et al., 2018).

While spectral methods have nice theoretical properties, MPNNs

such as HO-GCN (Abu-El-Haija et al., 2018) and GraphSAGE (Hamilton
et al., 2017) increase the neighborhood range from one-hop and make
use of higher-order convolution layers or higher-order neighborhood
aggregation techniques (Xu et al., 2018; Klicpera et al., 2018) to
outperform spectral based methods. This however increases model
complexity in order to achieve higher node classification performance
while assuming that there is a strong correlation between node features
and network structure. Concurrently, neglecting the existence of any
correlation between the structural and node attribute features is also a
strong assumption that may not hold true in all cases. Further, work such
as Approximate Personalized Propagation of Neural Predictions
(APPNP) (Klicpera et al., 2018) and Graph Diffusion Convolution(GDC)
(Klicpera et al., 1335) considers higher-order neighborhood information
by computing a stationary distribution pertaining to the random-walk
matrix as well as the importance of the neighborhoods by incorpo-
rating a weighting scheme based on Personalized PageRank (PPR) and
heat kernel (Chung, 2007; Donnat et al., 2018; Klicpera et al., 2018).
These approaches however lose focus of the immediate first-order
neighborhood of a target node by using a higher-order feature propa-
gation scheme that only considers global connectivity. Though APPNP
uses a teleport vector with no spectral properties to preserve local
connectivity, their final expression for the propagation scheme is similar
to that of a limiting distribution of a random walk matrix. Additionally,
the weighting schemes used in these approaches were originally devel-
oped to approximate a graph partitioning algorithm or specifically local
graph partitioning (Chung, 2007) which requires constraints and pre-
defined partition sizes.

In this work, we first assume that high-order structural and node
features are complementing. Second, we derive a kernel propagation
technique that computes an optimum limiting diffusion kernel as a
normalized discounted geometric series of the random walk matrix of
the network. The pre-processed higher-order structural features are then
propagated using an explicit first-order spectral definition. Further, the
higher-order structural features are also augmented with node features
which capture network-dependent node characteristics relevant for
discriminating structurally equivalent structures. Such a technique is
capable of capturing network and node independent features since the
proposed discounted geometric approximation is a variation of the
weighting scheme used in capturing community structure from real-

Fig. 1. Proposed Architecture for combining higher-order structural features with first-order feature propagation scheme. Each dotted circle within the network
represents the t-hop neighborhood of node i. The figure provides a visual flow of the data from the network form.

S.K. Arul Prakash and C.S. Tucker

Expert Systems With Applications 174 (2021) 114655

4

world networks (Girvan and Newman, 2002), thus enabling node clas-
sification performance on par with the state of the art methods. Hence,
this motivates the need for hybrid GNN models that are capable of
combining network independent and network-dependent features, as it
is clear that position aware (local and global) approaches are necessary
(Xu et al., 2018; You et al., 2019) to improve the performance of GNNs in
link prediction and classification tasks.

3. Kernel propagation technique

3.1. Notations

A network G := {V ,E } is an order 2 Tensor such that G ∈ RN×N

where N represents the number of users or V such that V ∈ RN and E :

= {(i, j)|i, j ∈ V × V , i ∕= j,E ⊆V × V } is the set of all pairs of
distinct nodes, called edges. For every node i ∈ V , the degree d(i) is the
number of edges leaving or entering i, such that d(i) =

∑
jAij, where

Aij ∈ A and A denotes the adjacency matrix while D denotes the degree
matrix of G . We introduce L which denotes the semi-supervised loss
with respect to the labeled part of the graph and f(.) be a neural network.
Let X denote the node features matrix. We define H(l) = [h(l)

1 ,h(l)
2 ,…,h(l)

N]
as the hidden layer representation of the network in the lth layer of f(.)
where h(l)

i ∈ RN represents node i. Fig. 1 presents an overview of our

proposed method for learning node representations from a network G

and performing node classification in a complete end to end manner.
The figure depicts an example of how node i’s representation is
computed and is later used for node classification. The following sec-
tions describe the method in detail.

3.2. Kernel propagation layer

Following (Kipf and Welling, 2016), we define the following layer-
wise propagation technique:

H(l+1) = σ
(

D̃
− 0.5

ÃD̃
− 0.5

H(l)W(l)
)

(1)

In Eq. (1), Ã = A+IN, D̃ = D + IN, where, IN is an identity matrix of
shape (N,N), D̃ii =

∑
jÃij, σ(.) denotes a non-linear activation function

such as ReLU(.), H(0) = X and W(l) is a layer-specific trainable weight
matrix. The graph convolutional layer above represents each node i as an
aggregate of its neighborhood N i such that it includes itself as a result of
self-loops.

Given the adjacency matrix of the network, we compute the random
walk transition matrix which provides information on the probability of
node transitions within the network. The random walk transition matrix
(P) represents the probability of a node (i) diffusing information or

Fig. 2. Difference between the attention mechanism used in GAT and the proposed AKP.

S.K. Arul Prakash and C.S. Tucker

Expert Systems With Applications 174 (2021) 114655

5

forming an edge with another node (j) given the previous state of the
nodes where P = Pij = Pr(j

⃒
⃒i) is a conditional probability which repre-

sents the probability of a node (i) transitioning from i to j in one step. In
our proposed update rule, we enable feature augmentation by concat-
enating the node features matrix (X) with an optimal t-hop diffusion
affinity matrix/kernel Π* which is a network independent feature matrix
derived from network topology (adjacency matrix). We define random
walk transition matrix as Prw = AD− 1. Since the graph convolutional
layer uses a normalized symmetric adjacency matrix with self loops, we

calculate transition matrix using Ã as P̂ = D̃
− 0.5

ÃD̃
− 0.5

D̃
− 1

. We derive
the expression for Π, the diffusion kernel as follows:

Π =
∑∞

t=0
P̂

t
(2)

Expanding Π, we rewrite Eq. (2) as (IN + P̂
1
+ P̂

2
+ … + P̂

∞
), which

can further be simplified as (IN − P̂)− 1 using the result of the geometric
series where, P̂ij < 1. We further normalize (symmetric normalization

can also be performed) the expression (IN − P̂)− 1 as (IN − P̂)− 1 D̂
− 1

where, D̂
− 1

is the degree matrix of the expression (IN − P̂)− 1. However,
computing (IN − P̂)− 1 poses a serious drawback in that, it may not be
possible to compute the inverse of matrix with huge number of nodes
without significant computing resources. Hence, as a workaround, we
compute an optimal Π* in just a few exponentials by introducing a dis-
count factor γ such that γ ∈ [0, 1] and the expression we are trying to
compute above is modified as (IN − γP̂)− 1. This expression, unlike
personalized page rank (PPR), does not take into consideration the root
node and assumes no hierarchical node ordering in terms of node
importance. Instead, γ weights all paths (node independent and node
dependent paths) of a particular path length t by a factor γt.

From Lemma 1 (see appendix for proof), and since γ < 1, we know
‖M

(t)(Π̃) − M (t)(Π)‖∞ ⩽γ(t)‖Π̃ − Π‖∞, thus converging to a limit Π* for
t≪∞. Given that we have derived a converging limit Π*, we now state
the kernel (because of the similarity of (IN − γP̂)− 1 with regularized
graph Laplacian kernel (Smola and Kondor, 2003)) propagation tech-
nique as follows.

H(l+1) = σ
((

D̃
− 0.5

ÃD̃
− 0.5)([

Π* D̂
− 1
,X
])

W(l)
)

(3)

Following equation Eq. (1), we augment H(0), which is the node features
matrix (X) with the normalized t-hop diffusion kernel, when l = 0. The
concatenated feature matrix re-weights the normalized symmetric ad-
jacency matrix, using node features and higher-order neighborhood
information. In the next section, we describe the multiplicative aggre-
gation method which aggregates the hidden representations of the nodes
such that nodes that belong to the same community are closer in the
embedding space.

3.3. Multi-head multiplicative attention mechanism

The output from the kernel propagation layer produces a new set of

node representations H(l+1) = [h(l+1)
1 ,h(l+1)

2 ,…,h(l+1)
N] where, h(l+1)

i ∈ RÑ

represents node i’s features in the (l+1) layer. Attention mechanism in
its general formulation allows every node representation to attend on
every other node’s representation. To preserve graph structure in the
node representations computed from the propagation step, we perform a

masked shared attentional mechanism (Veličković et al., 2017) a : RÑ X

RÑ⟶R following the modified GCN layer, which is parametrized by a

weight matrix, W(l+1) ∈ RÑxN. In our work, instead of applying a to the
concatenated representations of i and j, we employ a multiplicative
Hadamard product attention. This decreases the number of hidden layer

parameters to be learned by 50%. Fig. 2 presents an illustration of the
difference between the attention mechanism employed in this paper and
GAT. Following the transformations, the importance of node j’s hidden
representation to node i’s representations is captured as follows,

eij = a
(

Wh(l+1)
i ⊙ Wh(l+1)

j

)
(4)

We compute eij for nodes j which are in the neighborhood (N i) of node i.
In our experiments, the neighborhood (N i) will be the first-order
neighbors of i, including i. The shared attention mechanism a is a
single-layer feedforward neural network, parametrized by a such that

a ∈ RÑ which is then subject to a non-linear activation function ∊(.) such
as LeakyReLU(.). However, the Hadamard product of the representa-
tions need to be scaled in order to avoid exploding products, which in
turn makes softmax gradients extremely small (Vaswani et al., 2017). To
counteract this effect, the Hadamard products are scaled using

̅̅̅̅
K

√
as

shown in Eq. (5) where, K represents the number of heads used in
computing the attention coefficients. Following the LeakyReLU non-
linear activation (∊(.)), the attention coefficients computed by the
attention mechanism are expressed as:

αij =

exp∊

(
Wh(l+1)

i (Wh(l+1)
j)

T

̅̅̅
K

√

)

∑

c∈N i

exp∊

(
Wh(l+1)

i (Wh(l+1)
c)

T

̅̅̅
K

√

) (5)

The normalized attention coefficients as computed using Eq. (5) are then
linearly combined with respect to each node’s hidden representation
from layer (l) after applying a non-linearity η(.) such as Exponential
Linear Unit (ELU) as shown below.

h̃i
(l+1)

= η
(
∑

j∈N i

αijWh(l)
j

)

(6)

Additionally, we employ multi-head attention similar to Vaswani et al.
(2017) to stabilize the learning process of self-attention. In our experi-
ments, we implement K independent attention mechanisms.

3.4. Semi-supervised node classification

Having introduced the kernel propagation layer and the multi-head
attentional layer, we define the KP/AKP-GNN model as f(Ã,Π*) and
address the problem of semi-supervised node classification by training
our model using task-specific loss function. The complete forward
propagation of our two layer model with a softmax activation on the
final layer is defined as follows:

Ŷ = f
(

Ã,Π∗
)
= softmax

(
α
(

σ
((

D̃
− 0.5

ÃD̃
− 0.5)([

Π∗ D̂
− 1
,X
])

W(0)
))

W1
)

(7)

where, W0 ∈ R(N+C)xÑ,W1 ∈ R(KxÑ)xω,C is the number of column di-
mensions of a node’s feature vector (Xi) and ω is the number of final
hidden layer neurons. The loss function (L) for the multi-class node
classification task is evaluated as the cross-entropy error over the
labelled examples as follows:

L = −
∑

i∈V L

∑S

s=1

[

YislnŶ is

]

(8)

Here, V L is the set of nodes in the training data for which class labels are
available, while S denotes the number of classes such that s ∈ S,Y is the
matrix of ground-truth one hot encoding denoting the class assignment
per node and Ŷ is the final layer predictions of the AKP-GCN model. The
network weights are trained end-to-end using the gradient descent

S.K. Arul Prakash and C.S. Tucker

Expert Systems With Applications 174 (2021) 114655

6

algorithm.

4. Experiments and discussion

We validate the feasibility of our algorithm against widely used
datasets by performing a multi-class, single-label classification to vali-
date the performance of the proposed algorithm in classifying nodes
based on the learned node representations. This section introduces the
experimental settings, followed by experimental results, and finally
discusses the results. The statistics of the datasets used in this work are
given in Table 1.

4.1. Experimental settings

4.1.1. Baseline methods
The choice of methods to benchmark against was motivated by

publication year, relevance to the proposed method, and current state of
the art. We benchmark our method with the following:

• Node2vec (Grover and Leskovec, 2016): This method also belongs to
the family of random-walk based approaches and generalizes the
Deepwalk approach. Node2vec performs a second-order proximity
learning, where random walks are traversed breadth-wise and depth-
wise, unlike Deepwalk which performs a 1st order proximity
learning.

• GCN (Kipf and Welling, 2016): GCN is one of the most popular GNN
models with most of the recent work and applications being built on
top of this architecture. The spectral rule as proposed by GCN can
represent a one-hop node neighborhood with a single layer and re-
quires additional layers for aggregating higher-order node neigh-
borhoods. Our method is a natural variant of the GCN.

• GAT (Veličković et al., 2017): GAT is an extension of GCN with an
aggregation based methodology, which employs self-attention with
weight sharing to place similar node representations from one-hop
neighborhoods closer together in the embedding space.

• JK-Net (Xu et al., 2018): This work advances the use of deep graph
neural networks, especially GCN which typically suffers from over-
smoothing with deeper layers (Oono and Suzuki, 2019). The au-
thors propose an architecture that selectively combines different
aggregations at the final layer – jumping knowledge (JK) networks.

• APPNP (Klicpera et al., 2018): This work advances the use of higher-
order neighborhood information in a forward propagation scheme
where the neighborhood is weighted using a heat kernel or PPR co-
efficients. Further, this approach disentangles the propagation
technique from the feature predictions scheme thereby enabling the
use of deeper layers without being susceptible to over-smoothing.

• GDC (Klicpera et al., 1335): The graph diffusion convolution
approach proposes to remove the restriction of only considering the
first-order neighborhood through the introduction of a generalized
graph diffusion. GDC is a GNN that combines the strengths of spatial
and spectral methods. This approach deviates from that of the pro-
posed approach since we consider higher-order structural informa-
tion as features and further uses a general weighting scheme that
captures structural information as node independent features.

4.1.2. Network statistics
We compare the methods described in sub-Section 4.1.1 by

comparing the node classification accuracies on commonly used citation
networks such as Cora, Citeseer and PubMed. In addition to the small-
scale networks, we benchmark and evaluate the proposed approach
and the comparing approaches on large-scale real-world networks
published in the open graph benchmark (ogb) project (Hu et al., 2020).
In this paper, since the problem under study is a node classification
problem, we use the ogb-proteins, ogb-arxiv and the ogb-products
datasets to benchmark the proposed approach. These datasets were
chosen based on the nature of the networks (homogeneous graphs), and
the size of the network (so as to fit the entire graph in the GPU memory)
without resorting to batching techniques since they are not the focus of
this study. Further, nodes in all the networks under study have node
features, except for the ogb-proteins network which contains edge fea-
tures. The dataset statistics are summarized in Table 1. For the small-
scale real world networks under study, we use 15% of the nodes for
training, 500 nodes for validation and testing. For the networks from the
ogb project, we use the same training, validation and test split as used in
their paper. In the results section, we report the average results of 3 runs
for each of the methods.

4.1.3. Cora, citeseer and PubMed networks
In the experiments that use the small-scale networks, we set the

number of KP-GCN and AKP-GCN hidden layers as one. The number of
hidden units in the convolution layer is set as 64 for Cora and Citeseer,
and 128 for PubMed. For the attentional layer, we use 4 attention heads
for Cora, Citeseer and PubMed datasets. The hyper-parameters for our
models are set as follows: dropout rate = 0.5, alpha value for LeakyReLU
as 0.2, weight decay (L2 Norm) as 5e− 4 and discount factor (γ) as 0.99.
We use Xavier initialization (Glorot and Bengio, 2010) for all weight and
attention matrices. For the optimization, we use Adam (Kingma and Ba,
2014) with a fixed learning rate of 0.02 and set the number of training
epochs as 50.

4.1.4. OGB networks
In the experiments which use the ogb networks, we set the number of

hidden layers as 2 and the number of attention heads as 4. The number
of hidden units in the final layer is set as 128. Due to GPU memory
constraints, we were unable to implement the attention mechanism on
the ogb-proteins and ogb-products networks. The remaining hyper-
parameters for all models are set as follows: dropout rate = 0.5, atten-
tion dropout = 0.0, alpha value for LeakyReLU = 0.1, discount factor
(γ) = 0.99 and training epochs per run = 200.

4.2. Experimental results and discussion

4.2.1. AKP-GCN models
In order to contrast and discuss the contributions and advantages of

the proposed method, we introduce multiple versions of our model as
follows:

1. KP-GCN using structural features and/or node features and no
attention mechanism for a GCN architecture.

2. AKP-GCN using structural features and/or node features and pro-
posed attention mechanism for a GCN architecture.

Table 1
Network Statistics and training/validation split (Multi-class, Single-label (MC, SL), Multi-class, Multi-label (MC,ML).

Cora Citeseer PubMed ogbn-proteins ogbn-arxiv ogbn-products

Nodes 2708 3312 19,717 132,534 169,343 2,449,029
Edges 5429 4732 44,324 39,561,252 1,166,243 61,859,140
Node/edge features 1433 3703 500 8 128 100
Classes 7 6 3 112 40 47
Classification type MC, SL MC, SL MC, SL MC, ML MC, SL MC, SL

S.K. Arul Prakash and C.S. Tucker

Expert Systems With Applications 174 (2021) 114655

7

3. KP-GAT using structural features and/or node features and no
attention mechanism for a GAT architecture.

4. KP-JK Net using structural features and/or node features and no
attention mechanism for a JK Net architecture.

We have publicly made available the official version of the codebase
pertaining to this work in GitHub and have ensured computational
reproducibility using Code Ocean. Interested readers can refer to the
following resources.1,2

Table 2 illustrates the computational time complexity for each of the
models (2 layers) proposed above. Since the pre-processing step com-
putes a t-hop power series of a transition matrix, the time complexity is
O (N3). Since we did not modify the internal architecture of GCN, GAT

and JK Net, we use the computational time complexities reported in the
respective papers while modifying the variables depending on the size of
the input and that of the intermediate steps. The computational
complexity reported for attention based model is for one attention head.

4.3. Parameter settings

4.3.1. Visualization and convergence analysis
Figs. 3–5 visualize the learned network embeddings for Cora, Cite-

seer and PubMed networks when using attention, structural and node
attribute information. From the learned embeddings, it is evident that
learning with node features or learning using the proposed diffusion
kernel produces a similar discrimination of the different classes in a 2
dimensional feature space, while when concatenated together, produces
a different discrimination in the case of Cora and Citeseer networks as
shown by Figs. 3c and 4c. We omit visualizing the other three data sets
since there exists far too many classes and nodes to visualize the
discrimination between classes.

Figs. 6 and 7 illustrates the convergence of the proposed models
trained using Cora network, where the proposed attention mechanism
helps prevent model over-fitting (training loss is significantly lower than
validation loss) during training, leading to a stable model convergence.
Further, we find that the generalization gap between validation and
testing accuracies for Cora, Citeseer and PubMed to be negligible when
AKP-GCN model is utilized for training and testing. Additionally, we also
observe that concatenating structural information along with node-
attribute information helps the model optimize an easier loss

Fig. 3. (a) Learned Cora embedding using structural features and attention (b) Learned Cora embedding using node features and attention (c) Learned Cora
embedding using structural features, node features and attention.

Table 2
Computational complexity of proposed models.

Computational complexity

KP-GCN O (N3) + O (

⃒
⃒
⃒E

⃒
⃒
⃒(N + C)Ñω)

AKP-GCN O (N3) + O (

⃒
⃒
⃒E

⃒
⃒
⃒(N + C)Ñω) + O (N2ω +

⃒
⃒
⃒E
⃒
⃒
⃒ω)

KP-GAT O (N3) + O (N(N + C)Ñω +

⃒
⃒
⃒E
⃒
⃒
⃒Ñω)

KP-JK Net O (N3) + O (

⃒
⃒
⃒E

⃒
⃒
⃒(N + C)Ñω)

1 https://github.com/AiPEX-Lab/Kernel-Propagation-in-Graph-Neural-
Networks.

2 https://codeocean.com/capsule/4740198/tree.

S.K. Arul Prakash and C.S. Tucker

Expert Systems With Applications 174 (2021) 114655

8

landscape (starting accuracy tends to be high, loss tends to be low)
leading to a better model fit.

However, for the other three datasets, namely the ogbn-proteins,
ogbn-arxiv and ogbn-products, we observe and report the existence of
a generalization gap (as defined in Hu et al. (2020)) while using the
proposed models as well as the comparing approaches. In the next sec-
tion, we quantify the accuracies and discuss the merits of the various
models used in the study.

4.3.2. Comparison between methods and discussion of experimental results
Table 3 displays the classification accuracy of the various methods on

the citation networks. Our method achieves superior classification per-
formance in comparison to the other methods. The kernel propagating
layer in the absence of node features and with/without attention
mechanism achieves comparable accuracy with respect to other
methods and model variations, while the concatenated structural and
node attribute features with/without attention mechanism achieves
state of the art performance on the Cora and PubMed networks. Though
we find that structural features and node attribute features complement
each other, when node features are unavailable, network-independent
structural features can be used in their place without loss in accuracy.
However, the node-features only model performed node classification

with comparable accuracy on the Citeseer network against our model
which uses node-features and structural features. Hence, we observe
that networks have an influence on how much information is encoded as
topology versus node features. In the case of the Cora network, struc-
tural features can improve node classification performance when com-
bined with node features. A similar case is observable for the PubMed
network as well. A possible reason for this scenario is the lower nodes to
edges ratio in the Cora and PubMed networks as well as the number of
node features being fewer than the number of nodes in the Citeseer
network. Hence node features enable better classification in the Citeseer
network which seems to present more importance to the behavior of the
nodes as opposed to node links while node features and structural fea-
tures enable better discrimination of nodes in the other two networks.
Further, by using the PubMed network where the number of nodes is of
an order of magnitude more than the Cora and Citeseer networks, we
show that our propagation technique is scalable to large networks.

The small-scale citation networks have been a topic of criticism
within the representation learning community since their network sizes
are not comparable to real-world networks that are orders of magnitude
larger and realistic. Hence, to validate the performance of the proposed
approach on existing GNNs, we perform experiments on large-scale ogb
datasets. Further, as noted by Hu et al. (2020), we find the training,

Fig. 4. (a) Learned Citeseer embedding using structural features and attention (b) Learned Citeseer embedding using node features and attention (c) Learned Citeseer
embedding using structural features, node features and attention.

S.K. Arul Prakash and C.S. Tucker

Expert Systems With Applications 174 (2021) 114655

9

validation and testing splits of the ogb datasets to be realistic and suit-
able for real-world deployment. In Table 4, we compare the validation
and training accuracies of the pre-processing step on the ogb-arxiv
network using GCN, GAT and JK Net variants using our proposed
approach. In our experiments, we test our proposed approach against
the baseline methods with node features (denoted by X) and without
node features (denoted by I which is an identity matrix that replaces X).
We find our KP-GAT model to outperform other approaches by a margin
of approximately 0.4% on average, and further note that our models are
able to improve the node classification accuracy of GCN, GAT and JK
Net. When compared to GDC which is also a pre-processing step, our
approach improves the node classification accuracy by a significant
margin. This highlights the inherent problem of lost focus of one-hop
neighborhood connectivity since the propagation scheme implemented
in GDC is of higher-order. Further, we notice that our KP-GAT imple-
mentation which makes use of only higher-order neighborhood struc-
ture outperforms GCN, GAT and JK Net when no node features are
considered. This highlights the ability of the proposed approach to
identify meaningful structural information when node features are un-
available. We also note that including node features further improves
the performance of our approach applied to GNNs.

Now we consider the ogb-products network, which is a sales network

and is also the largest network considered in this study. Given the size of
the network, we were unable to fit any attention models in the GPU and
found training using CPU to be significantly time-consuming (approxi-
mately 3–4 days to run 200 epochs per run for a total of three runs per
GNN variant). We were unable to find any GAT results from the ogb
paper (Hu et al., 2020) for this dataset. We report our results in Table 5.
We compare the validation and training accuracies of our approaches
with the baseline methods. We report and compare the results of our
approach applied to multiple GNN variants with the baseline approaches
while considering node features (denoted by X) and excluding node
features (denoted by I which is an identity matrix that replaces X). We

find our KP-JK Net ([X, Π* D̂
− 1

]) model outperforms other approaches
by a margin of approximately 1.0% on average. We further note that our
approach can improve the node classification accuracy of GCN and JK
Net by approximately 3.5% on average when considering node features
and higher-order structural features. Further, we note that GCN and
APPNP perform significantly better when node features are not utilized
during training. This shows that the node features pertaining to the ogb-
products network could be complex, leading to no learning, as opposed
to just learning self-attention. The training results further emphasize the
rich implicit higher-order structural information of the network which
can replace node features even when they are available.

Fig. 5. (a) Learned PubMed embedding using structural features and attention (b) Learned PubMed embedding using node features and attention (c) Learned
PubMed embedding using structural features, node features and attention.

S.K. Arul Prakash and C.S. Tucker

Expert Systems With Applications 174 (2021) 114655

10

Finally, we consider the ogb-proteins network, which unlike the
earlier networks, is a biological network expressing the relational in-
formation between functional protein components. Additionally, we
note that this protein network is denser in comparison to the other ogb
networks under study. Due to the density of the network, we were un-
able to fit any attention models in the GPU. We report our results in
Table 6. Since this is a multi-class, multi-label classification, we report
the Receiver Operating Characteristics-Area Under the Curve (ROC-
AUC) score in percentage. We observe the KP-GCN model which does
not consider any node features outperforms the state of the art methods.
Further, we note that the classification performance of all methods
improved in the presence of an identity matrix (absence of node fea-
tures), which reveals the importance of self-attention as features for this
network. Due to the nature/form in which the ogb-proteins network is
available in the official ogb database, we were unable to convert it to a
form suitable for ingestion by the official version of the GDC. As a result,
we did not include the results pertaining to GDC-GCN and GDC-JK Net
for this particular dataset. Further, we find that with exception to the

following variant of KP-GCN ([I, Π* D̂
− 1

]), using higher-order structural
information deteriorated the performance of GCN and JK Net by using
our approach. This highlights the presence of valuable information from

self-attention as features as opposed to node features in the ogb-proteins
network. Additionally, a model such as GCN with no residual connec-
tions like JK Net is observed to perform well in the presence of higher-
order features and self-attention as opposed to just self-attention or
higher-order structural features. Hence, the proteins network can be
concluded to have significant information in the form of self-attention
and higher-order information that can efficiently be learned using less
complex models such as GCN.

Based on our experiments, the ideal configuration for achieving the
best classification performance involves using both the structural and
node attribute features to learn meaningful representations. However,
from our experiments, we find that the configuration is dependent on the
network. The kernel propagation layer essentially captures higher-order
neighborhood information along with the local structure without the
need for any attention mechanism even when attention models don’t fit
in memory. Since our method proposes a pre-processing step applied to
GCN, GAT and JK Net, it exhibits the same memory and time complexity
as these models with the addition of the time complexity required to
compute the t-hop random walk matrix. Hence, by combining structural
information in the form of higher powers of random walk matrix and
positional features such as node features (You et al., 2019), our kernel

Fig. 6. (a) Cora loss convergence with structural features and no attention (b) Cora loss convergence with node features and no attention (c) Cora loss convergence
with structural features, node features and no attention.

S.K. Arul Prakash and C.S. Tucker

Expert Systems With Applications 174 (2021) 114655

11

Fig. 7. (a) Cora loss convergence with structural features and attention (b) Cora loss convergence with node features and attention (c) Cora loss convergence with
structural features, node features and attention.

S.K. Arul Prakash and C.S. Tucker

Expert Systems With Applications 174 (2021) 114655

12

propagating layer is also able to address the problem of sub-structure of
isomorphism.

5. Conclusions

In this work, we show that computing node independent structural
features as input features for each node in the network enables existing
models to perform on par with or better than approaches which consider
only node features by following a first-order spectral propagation
scheme. Additionally, if such node features are unavailable, higher-
order structural features can be used for node classification. Node fea-
tures have shown to improve node classification because of the addi-
tional information it provides to differentiate between nodes which have
similar sub-structure node arrangements. Hence node features can be
used concurrently along with structural features. This work motivates
research in the direction of deriving node independent structural fea-
tures which can enable encoding higher-order neighborhood informa-
tion alongside node features which complements structural information.
Future work will explore independence between structural and node
attribute features so that we understand the influence of topology and
node features on a given network, to then inform the appropriate choice
of network configuration for learning node representations from a
diverse range of real-world networks.

Table 3
Classification accuracies on small-scale real world networks ([.,.] denotes
feature concatenation).

Method Data used Cora Citeseer Pubmed

Node2vec (
Grover and
Leskovec,
2016)

A 68.66±1.83% 47.98±1.75% 72.36±0.95%

GCN (Kipf and
Welling,
2016)

A, I, Y 84.10±0.34% 68.75±0.67% 79.70±1.33%

GCN (Kipf and
Welling,
2016)

A, X, Y 85.58±0.48% 71.43±0.47% 84.00±1.10%

GAT (
Veličković
et al., 2017)

A, I, Y 82.40±0.62% 71.25±0.43% 83.90±0.70%

GAT (
Veličković
et al., 2017)

A, X, Y 83.34±0.47% 72.71±0.52% 83.90±0.70%

JK Net (Xu
et al., 2018)

A, I, Y 81.53±0.37% 70.34±0.29% 84.40±0.40%

JK Net (Xu
et al., 2018)

A, X, Y 82.60±0.43% 71.70±0.54% 84.50±0.80%

APPNP (
Klicpera
et al., 2018)

A, I, Y 84.93±0.29% 74.84±0.46% 83.37±0.32%

APPNP (
Klicpera
et al., 2018)

A, X, Y 85.79±0.27% 75.97±0.46% 84.10±0.72%

GDC-GCN (
Klicpera
et al., 1335)

A, X, Y 84.70±0.30% 71.25±0.27% 82.60±0.66%

KP-GCN A, Π* D̂
− 1

,
Y

85.60±0.53% 72.75±0.90% 82.20±1.10%

AKP-GCN A, Π* D̂
− 1

,
Y

84.60±0.60% 73.75±0.70% 81.10±0.70%

AKP-GCN A, X, Y 86.00±0.60% 76.00±1.00% 84.60±1.10%
KP-GCN A, [X,

Π* D̂
− 1

],
Y

87.00±0.80% 74.10±0.90% 85.10±0.80%

AKP-GCN A, [X,

Π* D̂
− 1

],
Y

87.80±0.80% 76.00±0.90% 84.50±0.60%

Table 4
Classification accuracies ([.,.] denotes feature concatenation).

Method Data used ogbn-arxiv
(Validation)

ogbn-arxiv
(Test)

Node2vec (Grover and
Leskovec, 2016)

A 69.23±0.13% 66.71±0.14%

GCN (Kipf and Welling,
2016)

A, I, Y 68.42±0.34% 66.88±0.89%

GCN (Kipf and Welling,
2016)

A, X, Y 71.22±0.03% 70.56±0.28%

GAT (Veličković et al.,
2017)

A, I, Y 68.97±0.41% 67.62±0.74%

GAT (Veličković et al.,
2017)

A, X, Y 71.71±0.04% 70.69±0.48%

JK Net (Xu et al., 2018) A, I, Y 64.49±0.26% 61.35±0.62%
JK Net (Xu et al., 2018) A, X, Y 71.29±0.09% 69.67±0.46%
APPNP (Klicpera et al.,

2018)
A, I, Y 70.52±0.29% 69.14±0.43%

APPNP (Klicpera et al.,
2018)

A, X, Y 71.39±0.19% 70.09±0.32%

GDC-GCN (Klicpera
et al., 1335)

T, X, Y 69.44±0.01% 65.93±0.15%

GDC-JK Net (Klicpera
et al., 1335)

T, X, Y 68.57±0.27% 65.21±0.45%

KP-GCN A, Π* D̂
− 1

, Y 69.98±0.12% 68.69±0.26%

KP-GAT A, Π* D̂
− 1

, Y 70.14±0.04% 68.82±0.17%

KP-JK Net A, Π* D̂
− 1

, Y 67.81±0.09% 65.78±0.04%

KP-GCN A, [X,

Π* D̂
− 1

], Y

71.55±0.30% 70.63±0.08%

KP-GAT A, [X,

Π* D̂
− 1

], Y

72.08±0.11% 71.17±0.19%

KP-JK Net A, [X,

Π* D̂
− 1

], Y

71.82±0.22% 70.20±0.21%

Table 5
Classification accuracies ([.,.] denotes feature concatenation).

Method Data Used ogbn-products
(Validation)

ogbn-products
(Test)

Node2vec (Grover and
Leskovec, 2016)

A 86.32±0.06% 68.49±0.10%

GCN (Kipf and Welling,
2016)

A, I, Y 90.97±0.07% 71.20±0.55%

GCN (Kipf and Welling,
2016)

A, X, Y 88.06±0.12% 68.86±0.26%

JK Net (Xu et al., 2018) A, I, Y 87.50±0.06% 56.78±1.06%

JK Net (Xu et al., 2018) A, X, Y 88.70±0.08% 69.57±0.06%

APPNP (Klicpera et al.,
2018)

A, I, Y 91.69±0.05% 73.93±0.33%

APPNP (Klicpera et al.,
2018)

A, X, Y 89.45±0.03% 73.05±0.07%

GDC-GCN (Klicpera
et al., 1335)

A, X, Y 87.81±0.06% 66.06±0.08%

GDC-JK Net (Klicpera
et al., 1335)

A, X, Y 88.83±0.09% 67.17±0.03%

KP-GCN A, Π* D̂
− 1

, Y 91.85±0.07% 74.16±0.41%

KP-GCN A, [X,

Π* D̂
− 1

], Y

91.85±0.12% 74.04±0.10%

KP-JK Net A, Π* D̂
− 1

, Y 91.23±0.05% 70.03±0.12%

KP-JK Net A, [X,

Π* D̂
− 1

], Y

92.34±0.05% 74.80±0.66%

S.K. Arul Prakash and C.S. Tucker

Expert Systems With Applications 174 (2021) 114655

13

Funding

This research was funded in part by the Air Force Office of Scientific

Research (AFOSR) grant FA9550-18-1-0108. Any opinions, findings, or
conclusions found in this paper are those of the authors and do not
necessarily reflect the views of the sponsors.

CRediT authorship contribution statement

Sakthi Kumar Arul Prakash: Methodology, Software, Validation,
Formal analysis, Investigation, Writing - original draft, Writing - review
& editing, Visualization. Conrad S. Tucker: Conceptualization, Writing
- review & editing, Supervision, Project administration, Funding
acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Appendix A. Proof of convergence for the kernel propagation technique

Lemma 1. A mapping M : Π⟶Π is a contraction mapping.

‖M (Π̃) − M (Π)‖∞⩽γ‖Π̃ − Π‖∞ (9)

where, M (Π̃) = IN +γP̂Π̃ and M (Π) = IN + γP̂Π
Proof.

‖M (Π̃) − M (Π)‖∞ = ‖IN + γP̂Π̃ − IN − γP̂Π‖∞ = ‖γP̂
(

Π̃ − Π
)
‖∞⩽γ‖P̂‖∞‖Π̃ − Π‖∞ (10)

Since we know that a transition probability matrix is a right stochastic matrix,
⃦
⃦
⃦P̂‖∞ = maxi

∑
j P̂(i, j) = 1. Hence, Eq. (4) simplifies to,

‖M (Π̃) − M (Π)‖∞⩽γ‖Π̃ − Π‖∞ (11)

Appendix B. Additional experimental details

All experiments were conducted on a desktop with the following configuration:

• Operating System: Ubuntu 18.04.5 LTS
• CPU: Intel Xeon(R) CPU E5-2698 v4
• GPU: Tesla V100-DGXS-32 GB
• Software: Python 3.7.5, Pytorch 1.4.0.

References

Girvan, M. & Newman, M. E. J. (2002). Community structure in social and biological
networks. Proceedings of the National Academy of Sciences 99 (12), 7821–7826.
ISSN 0027-8424.

Rosvall, M. & Bergstrom, C.T. (2008). Maps of random walks on complex networks
reveal community structure. Proceedings of the National Academy of Sciences 105
(4), 1118–1123. ISSN 0027-8424.

Lu, Q. & Getoor, L. (2003). Link-based classification. In Proceedings of the 20th
international conference on machine learning (ICML-03) (pp. 496–503).

Table 6
ROC-AUC score ([.,.] denotes feature concatenation).

Method Data used ogbn-proteins
(Validation)

ogbn-proteins
(Test)

Node2vec (Grover and
Leskovec, 2016)

A 66.34±0.56% 64.11±0.67%

GCN (Kipf and Welling,
2016)

A, I, Y 80.00±0.16% 76.71±1.21%

GCN (Kipf and Welling,
2016)

A, X, Y 75.77±0.26% 69.05±0.47%

JK Net (Xu et al., 2018) A, I, Y 74.91±0.26% 72.83±0.40%
JK Net (Xu et al., 2018) A, X, Y 77.57±0.24% 73.84±0.59%
APPNP (Klicpera et al.,

2018)
A, I, Y 80.21±0.52% 76.21±0.95%

APPNP (Klicpera et al.,
2018)

A, X, Y 70.99±0.19% 65.43±0.25%

KP-GCN A, Π* D̂
− 1

, Y 72.82±0.38% 65.91±0.90%

KP-GCN A, [I,

Π* D̂
− 1

], Y

81.14±0.27% 77.97±0.28%

KP-GCN A, [X,

Π* D̂
− 1

], Y

74.77±0.64% 68.00±0.92%

KP-JK Net A, Π* D̂
− 1

, Y 67.41±3.07% 67.07±3.18%

KP-JK Net A, [I,

Π* D̂
− 1

], Y

72.43±0.76% 70.50±1.46%

KP-JK Net A, [X,

Π* D̂
− 1

], Y

66.46±0.17% 62.63±2.29%

S.K. Arul Prakash and C.S. Tucker

Expert Systems With Applications 174 (2021) 114655

14

Perozzi, B., Al-Rfou, R. & Skiena, S. (2014). Deepwalk: Online learning of social
representations. In Proceedings of the 20th ACM SIGKDD international conference
on knowledge discovery and data mining (pp. 701–710). ACM. ISBN 145032956X.

Grover, A. & Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining (pp. 855–864). ACM. ISBN 1450342329.

Kipf, T. N. & Welling, M., 2016. Semi-supervised classification with graph convolutional
networks, arXiv preprint arXiv:1609.02907.

Li, B. & Pi, D. (2019). Learning deep neural networks for node classification. Expert
Systems with Applications 137, 324–334. ISSN 0957-4174.

Bhagat, S., Cormode, G., & Muthukrishnan, S. (2011). Node classification in social
networks. In Social network data analytics (pp. 115–148). Springer.

Gärtner, T., Horváth, T. & Wrobel, S. (2010). Graph kernels.
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C. & Philip, S. Y., 2020. A comprehensive

survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems. ISSN 2162–237X.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P. & Bengio, Y., 2017. Graph
attention networks. arXiv preprint arXiv:1710.10903.

Hamilton, W., Ying, Z. & Leskovec, J. (2017). Inductive representation learning on large
graphs. In Advances in neural information processing systems (pp. 1024–1034).

Xu, K., Hu, W., Leskovec, J. & Jegelka, S. (2018). How powerful are graph neural
networks? In International conference on learning representations.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K. -I. & Jegelka, S., 2018.
Representation learning on graphs with jumping knowledge networks. arXiv
preprint arXiv:1806.03536.

Klicpera, J., Bojchevski, A. & Günnemann, S., 2018. Predict then propagate: Graph
neural networks meet personalized pagerank, arXiv preprint arXiv:1810.05997.

Abu-El-Haija, S., Alipourfard, N., Harutyunyan, H., Kapoor, A. & Perozzi, B. (2018). A
higher-order graph convolutional layer. In Proceedings of the 32nd conference on
neural information processing systems (NIPS 2018). NIPS.

Veličković, P., Fedus, W., Hamilton, W. L., Liò, P., Bengio, Y. & Hjelm, R. D., 2018. Deep
graph infomax. arXiv preprint arXiv:1809.10341.

Bianconi, G., Pin, P. & Marsili, M. (2009). Assessing the relevance of node features for
network structure. Proceedings of the National Academy of Sciences 106 (28),
11433–11438. ISSN 0027-8424.

Klicpera, J., Weißenberger, S. & Günnemann, S. (2019). Diffusion improves graph
learning. In Advances in neural information processing systems (pp. 13354–13366).

Belkin, M. & Niyogi, P. (2002). Laplacian eigenmaps and spectral techniques for
embedding and clustering. In Advances in neural information processing systems
(pp. 585–591).

Tang, L. & Liu, H. (2011). Leveraging social media networks for classification. Data
Mining and Knowledge Discovery 23 (3), 447–478, ISSN 1384-5810.

Henderson, K., Gallagher, B., Eliassi-Rad, T., Tong, H., Basu, S., Akoglu, L., Koutra, D.,
Faloutsos, C. & Li, L. (2012). Rolx: Structural role extraction & mining in large
graphs. In Proceedings of the 18th ACM SIGKDD international conference on
knowledge discovery and data mining (pp. 1231–1239). ACM. ISBN 1450314627.

Ribeiro, L. F. R., Saverese, P. H. P. & Figueiredo, D. R. (2017). struc2vec: Learning node
representations from structural identity. In Proceedings of the 23rd ACM SIGKDD
international conference on knowledge discovery and data mining (pp. 385–394).
ACM. ISBN 1450348874.

Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K. & Tang, J. (2018). Network embedding as
matrix factorization: Unifying deepwalk, line, pte, and node2vec. In Proceedings of
the eleventh ACM international conference on web search and data mining (pp.
459–467). ACM. ISBN 1450355811.

Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in
networks. Physical Review E, 69(2), 26113.

Yang, J. & Leskovec, J. (2015). Defining and evaluating network communities based on
ground-truth. Knowledge and Information Systems 42 (1), 181–213. ISSN 0219-
1377.

Wang, X., Jin, D., Cao, X., Yang, L. & Zhang, W. (2016). Semantic community
identification in large attribute networks. In Thirtieth AAAI conference on artificial
intelligence.

He, D., Feng, Z., Jin, D., Wang, X. & Zhang, W. (2017). Joint identification of network
communities and semantics via integrative modeling of network topologies and node
contents. In Thirty-first AAAI conference on artificial intelligence.

Li, Y., Sha, C., Huang, X. & Zhang, Y. (2018). Community detection in attributed graphs:
an embedding approach. In Thirty-second AAAI conference on artificial intelligence.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. & Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. In Advances in
neural information processing systems (pp. 3111–3119).

Bahdanau, D., Cho, K. & Bengio, Y., 2014. Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473.

Luong, M. -T., Pham, H. & Manning, C. D., 2015. Effective approaches to attention-based
neural machine translation. arXiv preprint arXiv:1508.04025.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., & Bengio, Y.
(2015). Show, attend and tell: Neural image caption generation with visual
attention. In International conference on machine learning (pp. 2048–2057).

Mnih, V., Heess, N. & Graves, A. (2014). Recurrent models of visual attention. In
Advances in neural information processing systems (pp. 2204–2212).

Lee, J. B., Rossi, R. A., Kim, S., Ahmed, N. K. & Koh, E. (2019). Attention models in
graphs: A survey. ACM Transactions on Knowledge Discovery from Data (TKDD) 13
(6), 1–25. ISSN 1556-4681.

Li, Q., Han, Z. & Wu, X. -M. (2018). Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the AAAI conference on artificial
intelligence (Vol. 32). ISBN 2374-3468.

Chung, F. (2007). The heat kernel as the pagerank of a graph. Proceedings of the
National Academy of Sciences 104 (50), 19735–19740. ISSN 0027-8424.

Donnat, C., Zitnik, M., Hallac, D. & Leskovec, J., 2018. Spectral graph wavelets for
structural role similarity in networks.

You, J., Ying, R. & Leskovec, J., 2019. Position-aware graph neural networks. arXiv
preprint arXiv:1906.04817.

Smola, A. J., & Kondor, R. (2003). Kernels and regularization on graphs. In Learning
theory and kernel machines (pp. 144–158). Springer.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł. &
Polosukhin, I. (2017). Attention is all you need. In Advances in neural information
processing systems (pp. 5998–6008).

Oono, K. & Suzuki, T., 2019. Graph neural networks exponentially lose expressive power
for node classification. arXiv preprint arXiv:1905.10947.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M. & Leskovec, J.,2020.
Open graph benchmark: Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687.

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international conference
on artificial intelligence and statistics (pp. 249–256).

Kingma, D. P. & Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

S.K. Arul Prakash and C.S. Tucker

http://refhub.elsevier.com/S0957-4174(21)00096-8/h0040
http://refhub.elsevier.com/S0957-4174(21)00096-8/h0040
http://refhub.elsevier.com/S0957-4174(21)00096-8/h0125
http://refhub.elsevier.com/S0957-4174(21)00096-8/h0125
http://refhub.elsevier.com/S0957-4174(21)00096-8/h0165
http://refhub.elsevier.com/S0957-4174(21)00096-8/h0165
http://refhub.elsevier.com/S0957-4174(21)00096-8/h0165
http://refhub.elsevier.com/S0957-4174(21)00096-8/h0200
http://refhub.elsevier.com/S0957-4174(21)00096-8/h0200
http://refhub.elsevier.com/S0957-4174(21)00096-8/h0220
http://refhub.elsevier.com/S0957-4174(21)00096-8/h0220
http://refhub.elsevier.com/S0957-4174(21)00096-8/h0220

	Node classification using kernel propagation in graph neural networks
	1 Introduction
	2 Related work
	2.1 Random-walk based approaches
	2.2 Attention and neighborhood aggregation methods

	3 Kernel propagation technique
	3.1 Notations
	3.2 Kernel propagation layer
	3.3 Multi-head multiplicative attention mechanism
	3.4 Semi-supervised node classification

	4 Experiments and discussion
	4.1 Experimental settings
	4.1.1 Baseline methods
	4.1.2 Network statistics
	4.1.3 Cora, citeseer and PubMed networks
	4.1.4 OGB networks

	4.2 Experimental results and discussion
	4.2.1 AKP-GCN models

	4.3 Parameter settings
	4.3.1 Visualization and convergence analysis
	4.3.2 Comparison between methods and discussion of experimental results

	5 Conclusions
	Funding
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Appendix A Proof of convergence for the kernel propagation technique
	Appendix B Additional experimental details
	References

